K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Bài 1 : 

Ta có : 

\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)

Vì : 

\(\frac{2010}{2011}>\frac{2010}{2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)

Nên : \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)

Vậy \(A>B\)

Bài 2 : 

\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)

\(\Rightarrow\)\(2⋮\left(n-1\right)\)

\(\Rightarrow\)\(\left(n-1\right)\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

Suy ra : 

\(n-1\)\(1\)\(-1\)\(2\)\(-2\)
\(n\)\(2\)\(0\)\(3\)\(-1\)

Vì n là số tự nhiên nên \(n\in\left\{0;2;3\right\}\)

Vậy \(n\in\left\{0;2;3\right\}\)

7 tháng 2 2018

Các bạn ơi mình nói thêm là những chỗ nào có dấu / là phân số nhé ! ví dụ như là 2010/2011

1 tháng 4 2019

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

đi tui cần điểm hỏi đáp

1 tháng 4 2019

yêu cầu nghiêm túc

15 tháng 3 2018

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q 

Vậy P > Q

b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b

\(\Rightarrow a.b=420.21=8820\)

Ta có:

\(ab=8820\)

\(a+21=b\Rightarrow b-a=21\)

Hai số cách nhau 21 mà có tích là 8820 là 84 , 105

Mà a + 21 = b suy ra a < b

Vậy a = 84 ; b = 105

15 tháng 3 2018

a,-Cách khác:

-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)

\(\Rightarrow P>Q\)

14 tháng 2 2020

Không ai giúp tôi giải mấy bài này à?

28 tháng 2 2022

EM LỚP 5 KO BT LÀM

HÌ (>_<)

 

6 tháng 5 2016

A=3n-5/n+4=3(n+4)-17/n+4=3-(17/n+4)

Để A có giá trị nguyên

=>17 chia hết cho n+4

=>n+4 thuộc Ư(17)

Mà Ư(17)={1;-1;17;-17}

Ta có bảng sau:

n+41-117-17
n-3-513-21

Vậy n={-3;-5;13;-21}

25 tháng 8 2018

1: \(C=2010\cdot2012\)

\(C=\left(2011-1\right)\left(2011+1\right)\)

\(C=2011\left(2011+1\right)-\left(2011+1\right)\)

\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)

Mà \(D=2011\cdot2011\)

\(\Rightarrow C< D\)

2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7

3: Chú thích: giá trị nhỏ nhất=GTNN

Để M có GTNN

thì \(2012-\frac{2011}{2012-x}\) có GTNN

Nên \(\frac{2011}{2012-x}\)có GTLN

nên 2012-x>0 và x thuộc N

Suy ra: 2012-x=1

Suy ra: x=2011

Vậy, M có GTNN là 2011 khi x=2011

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1