Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-5x^2y+25xy^2-125y^3+5x^2y-25xy^2\)
\(=y^3+x^3\)
Thay \(x=-5;y=-3\) vào biểu thức trên, ta có:
\(\left(-3\right)^3+\left(-5\right)^3\)
\(=-27-125\)
\(=-152\)
Vậy giá trị của biểu thức trên là -152 tại x= -5, y= -3
b) \(a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^2\)
Thay a= -4, b=4 vào biểu thức trên, ta có:
\(\left(-4\right)^3+4^3-\left(-4+4\right)^2\)
\(=-64+64-0^2\)
\(=0\)
Vậy giá trị của biểu thức trên là 0 tại x= -4, y=4
Chúc bạn học tốt
\(a.126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)=126y^3+x^3-125y^3=x^3+y^3\)
Thay : \(x=-5;y=-3\) vào biểu thức trên , ta có :
\(-5^3-3^3=-152\)
\(b.a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)=a^3+b^3-\left(a-b\right)^3=a^3+b^3-a^3+3a^2b-3ab^2+b^3=2b^3+3ab\left(a-b\right)\)
Thay : \(a=-4;b=4\) vào biểu thức trên , ta có :
\(2.4^3+3.\left(-4\right).4\left(-4-4\right)=512\)
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự
Bài 4.
a) 3xy2 - 45x2y = 3xy( y - 15x )
b) 25y2 - 4x2 + 4x - 1
= 25y2 - ( 4x2 - 4x + 1 )
= ( 5y )2 - ( 2x - 1 )2
= ( 5y - 2x + 1 )( 5y + 2x - 1 )
c) x2 - 5x + xy - 5y
= x( x - 5 ) + y( x - 5 )
= ( x - 5 )( x + y )
d) x2 - 8x - 33
= x2 + 3x - 11x - 33
= x( x + 3 ) - 11( x + 3 )
= ( x + 3 )( x - 11 )
Bài 5.
a) A = ( x - 2 )3 - x2( x - 4 ) + 8
= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8
= -2x2 + 12x
B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9
= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9
= x - 3 - x2 - 7x - 9
= -x2 - 6x - 12
b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
bài 1.
a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)
b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)
c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)
d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)
.bài 2
a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)
b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)
c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)
d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)
Trả lời:
Bài 1: Rút gọn biểu thức:
a) A = ( x - y )2 + ( x + y )2
= x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
b) B = ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
c) C = ( 2a + b )2 - ( 2a - b )2
= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )
= 4a2 + 4ab + b2 - 4a2 + 4ab - b2
= 8ab
d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4
= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4
= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4
= - 4x2 + 20x - 13
Bài 2: Rút gọn rồi tính giá trị biểu thức:
a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )
= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 )
= 2x2 + 6x - 2x2 + 4x + 16
= 10x + 16
Thay x = 1/2 vào A, ta có:
\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x
= 9x2 + 24x + 16 - x2 + 16 - 10x
= 8x2 + 14x + 32
Thay x = - 1/10 vào B, ta có:
\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )
= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )
= - 3x2 + 6x + 3x2 - 12
= 6x - 12
Thay x = 1 vào C, ta có:
\(C=6.1-12=-6\)
d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 )
= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x
= 4x - 5
Thay x = - 1 vào D, ta có:
\(D=4.\left(-1\right)-5=-9\)
a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)