Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\frac{1}{20}+2.\frac{1}{30}+2.\frac{1}{42}+...+2.\frac{1}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
b) để phân số \(\frac{7n}{7n+1}\)tối giản thì ƯCLN ( 7n ; 7n + 1 ) = 1 hoặc -1
đặt d là ƯCLN ( 7n ; 7n + 1 )
Ta có : 7n \(⋮\)d ( 1 )
7n + 1 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)7n + 1 - 7n \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
\(\Rightarrow\)d \(\in\)Ư ( 1 )
\(\Rightarrow\)d = { 1 ; -1 }
Vậy với mọi n \(\in\)Z thì phân số \(\frac{7n}{7n+1}\)luôn là phân số tối giản
Gọi d là ƯCLN của 7n và 7n + 1
=> 7n chia hết cho d và 7n + 1 chia hết cho d
=> (7n + 1) - 7n chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n
Gọi ước chung lớn nhất cảu 7n và 7n+1 là d
Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d
=> 7n+1 - 7n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> uwocschung lớ nhất của 7 n và 7n+1 là 1
=> \(\frac{7n}{7n+1}\)tối giản
=> đpcm
Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu
Mình làm bài 4
Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp
Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1
Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
Bài 1: x thuộc tập hợp Z.
Bài 2:
a)
b) Để phân số đó tối giản thì ƯCLN (7n, 7n + 1) = 1
Gọi d là ƯCLN của 7n và 7n + 1, ta có:
7n chia hết cho d và 7n + 1 chia hết cho d => 7n + 1 - 7n chia hết cho d => 1 chia hết cho d => d = 1
Vậy phân số đó tối giản