K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Bài 1: x thuộc tập hợp Z.

Bài 2:

a)

b) Để phân số đó tối giản thì ƯCLN (7n, 7n + 1) = 1

Gọi d là ƯCLN của 7n và 7n + 1, ta có:

7n chia hết cho d và 7n + 1 chia hết cho d => 7n + 1 - 7n chia hết cho d => 1 chia hết cho d => d = 1

Vậy phân số đó tối giản

26 tháng 4 2017

a)   \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(A=2.\frac{1}{20}+2.\frac{1}{30}+2.\frac{1}{42}+...+2.\frac{1}{240}\)

\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(A=2.\frac{3}{16}\)

\(A=\frac{3}{8}\)

b) để phân số \(\frac{7n}{7n+1}\)tối giản thì ƯCLN ( 7n ; 7n + 1 ) = 1 hoặc -1

đặt d là ƯCLN ( 7n ; 7n + 1 )

Ta có : 7n \(⋮\)d   ( 1 )

          7n + 1 \(⋮\)d  ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)7n + 1 - 7n \(⋮\)d

\(\Rightarrow\)\(⋮\)d

\(\Rightarrow\)\(\in\)Ư ( 1 )
\(\Rightarrow\)d = { 1 ; -1 }

Vậy với mọi n \(\in\)Z thì phân số \(\frac{7n}{7n+1}\)luôn là phân số tối giản

2 tháng 8 2017

Gọi d là ƯCLN của 7n và 7n + 1

=> 7n chia hết cho d và 7n + 1 chia hết cho d

=> (7n + 1) - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n 

2 tháng 8 2017

Gọi ước chung lớn nhất cảu 7n và 7n+1 là d 

Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d 

=> 7n+1 - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> uwocschung lớ nhất của 7 n và 7n+1 là 1

=> \(\frac{7n}{7n+1}\)tối giản

=> đpcm

5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n

Bài 1:Tính tổng các số sau:a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)b/20x15-20x13+20c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)Bài 2:Cho A=\(\frac{n-1}{n+4}\)a/Hãy tìm n nguyên để A là một phân số.b/Hãy tìm n nguyên để A là một số nguyên.Bài 3:A/Số nguyên a phải có điều kiện gì để ta có phân số:a/\(\frac{32}{a-1}\)b/\(\frac{a}{5a+30}\)B/Số nguyên a phải có điều kiện gì...
Đọc tiếp

Bài 1:Tính tổng các số sau:

a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)

b/20x15-20x13+20

c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)

Bài 2:Cho A=\(\frac{n-1}{n+4}\)

a/Hãy tìm n nguyên để A là một phân số.

b/Hãy tìm n nguyên để A là một số nguyên.

Bài 3:

A/Số nguyên a phải có điều kiện gì để ta có phân số:

a/\(\frac{32}{a-1}\)

b/\(\frac{a}{5a+30}\)

B/Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:

a/\(\frac{a+1}{3}\)

b/\(\frac{a-2}{5}\)

c/\(\frac{a-2}{a-4}\)

C/Tìm số nguyên x để các phân số sau là số nguyên:

a/\(\frac{13}{x-1}\)

b/\(\frac{x+3}{x-2}\)

Bài 4:Cho \(\frac{a}{b}=\frac{c}{d}\)

Hãy chứng minh  rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)

Bài 5:Tính nhanh:

a/465+[58+(-465)+(-38)]

b/217+[43+(-217)+(-23)]

Bài 6:Cho A=\(\frac{10^{2004}+1}{10^{2005}+1}\)và B=\(\frac{10^{2005}+1}{10^{2006}+1}\)

So sánh A và B

Bài 7:Tính giá trị các biểu thức sau:

a/A=(-1)x(-1)2x(-1)3x(-1)4x...x(-1)2011

b/B=70x\(\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

 

0
4 tháng 2 2022

hahaa

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm