Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-2\\x\ge3\end{cases}\)\(\Leftrightarrow x\ge3\)
b) Có: A=B
\(\Leftrightarrow\sqrt{x+2}\cdot\sqrt{x-3}=\sqrt{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x-3\right)}-\sqrt{\left(x+2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x thuộc ĐK)
Vậy với mọi \(x\ge3\) thì A=B
a) A có nghĩa khi \(\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\) \(\Leftrightarrow x\ge3\)
B có nghĩa khi \(\left(x+2\right)\left(x-3\right)\ge0\) \(\Leftrightarrow\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-3\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge3\\x\le-2\end{array}\right.\)
b) Để A = B tức là cả A và B đều có nghĩa , suy ra đkxđ \(x\ge3\)
Vậy với mọi \(x\ge3\) thì A = B
A=B òi mà
để A,B có nghĩa thì
\(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow x\ge3}\)
chưa bằng nhau đâu vì chưa biết giá trị ở dưới dấu căn là âm hay dương của BT A
Do hai tam giác có độ dài 3 cạnh là a,b,c và a',b',c' nên ta có tỷ lệ sau
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\) \(\Rightarrow\hept{\begin{cases}a=k.a'\\b=k.b'\\c=k.c'\end{cases}}\)
Ta có : \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{ka'.a'}+\sqrt{kb'.b'}+\sqrt{kc'.c'}\)
\(=a'.\sqrt{k}+b'.\sqrt{k}+c'.\sqrt{k}=\sqrt{k}.\left(a'+b'+c'\right)\)
Ta lại có : \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k.\left(a'+b'+c'\right)\left(a'+b'+c'\right)}=\sqrt{k}.\left(a'+b'+c'\right)\)
Vậy ......
Bài này trong SBT mà = Sau có giải ko nhỉ ( mình ko dùng nó)
a)
A có nghĩa khi x +2 >/ 0 => x >/ -2
và x -3 >/ 0 => x >/ 3
=>x >/ 3
B có nghĩa khi (x+2(x-3) >/ 0 => x</ -2 hoặc x >/ 3
b) A = B => x >/ 3
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)