K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Q= [\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\)]\(:\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(Q=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(Q=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(Q=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

15 tháng 10 2018

phan 3 nua

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

19 tháng 7 2019

undefinedundefinedcau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha

19 tháng 7 2019

\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)

\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)

Câu c đề sai (đã sửa)

10 tháng 8 2017

Ta có :

 Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)

=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)

=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)

=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)

           =\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)

           =\(4-2\sqrt{4-3}\)

           =\(4-2\)

           =\(2\)

=>\(A=\sqrt{2}\)

NV
9 tháng 7 2019

\(\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}\right]\left[\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]^2=\left(x+\sqrt{x}+1\right)\frac{1}{\left(1+\sqrt{x}\right)^2}=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\)

Đề bài sai

\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)

\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)

Do \(\sqrt{2012}>\sqrt{2010}\) \(\Rightarrow\sqrt{2012}+\sqrt{2011}>\sqrt{2011}+\sqrt{2010}>0\)

\(\Rightarrow\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\Rightarrow\sqrt{2012}-\sqrt{2011}< \sqrt{2011}-\sqrt{2010}\)

\(A=\frac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}-2\sqrt{y}\)

\(M^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\le2\left(x-1+9-x\right)=16\)

\(\Rightarrow M\le4\Rightarrow M_{max}=4\) khi \(x-1=9-x\Leftrightarrow x=5\)

9 tháng 7 2019

đề câu a) là

\(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

ĐK: $x\neq y; x,y\geq 0$

a)

\(B=\left[\frac{(x-y)(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}-\frac{x\sqrt{x}-y\sqrt{y}}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}.\frac{1}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})}{\sqrt{x}-\sqrt{y}}.\frac{1}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) Ta thấy:

\(\sqrt{xy}\geq 0, \forall x,y\geq 0\)

\(x-\sqrt{xy}+y=(\sqrt{x}-\frac{\sqrt{y}}{2})^2+\frac{3}{4}y>0, \forall x,y\geq 0; x\neq y\)

\(\Rightarrow B=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\geq 0\) (đpcm)

c)

Áp dụng BĐT AM-GM: \(x+y\geq 2\sqrt{xy}\Rightarrow x-\sqrt{xy}+y\geq \sqrt{xy}\)

\(\Rightarrow B=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\leq 1\)

Dấu "=" xảy ra khi $x=y$. Mà $x\neq y$ nên $B< 1\Rightarrow \sqrt{B}< 1$

Do đó: \(B=\sqrt{B}.\sqrt{B}< \sqrt{B}\)

1 tháng 12 2019

bạn ơi ở phần c áp dụng cái j vậy bạn?

21 tháng 7 2018

a. =\(\frac{x\sqrt{xy}+y\sqrt{x^2}-x\sqrt{y^2}-y\sqrt{xy}}{\sqrt{xy}}\)=\(\frac{x\sqrt{xy}+xy-xy-y\sqrt{xy}}{\sqrt{xy}}\)
=\(\frac{x\sqrt{xy}-y\sqrt{xy}}{\sqrt{xy}}\)=\(\frac{\sqrt{xy}\left(x-y\right)}{\sqrt{xy}}\)=\(x-y\)
b. =\(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x-1}}\)=\(x+\sqrt{x}+1\)