Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b)
\(64x^3+48x^2+12+1=27\) (1)
\(\Leftrightarrow\left(4x+1\right)^3=3^3\)
\(\Leftrightarrow4x+1=3\)
\(\Leftrightarrow4x=3-1\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{1}{2}\right\}\)
Bài 1:
a) x2 +y2 - 2x + 10y + 26 = 0
<=> x2 - 2x + 1 +y2 + 10y + 25 = 0
<=> (x-1)2 + (y + 5)2 = 0
<=> x - 1 = 0 và y + 5 = 0
<=> x = 1 và y = -5
Vậy x = 1 và y = -5
b)Tuấn Anh Phan Nguyễn
Bài 2:
a) x2 + 2xy + y2
= (x + y)2
= 32 = 9
b) x2 - 2xy + y2
= x2 + 2xy + y2 - 4xy
= (x + y)2 - 4xy
= 32 - 4.(-10)
= 9 + 40 = 49
c) x2 + y2
= x2 + 2xy + y2 - 2xy
= (x + y)2 - 2xy
= 32 - 2.(-10)
= 9 + 20 = 29
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
Bài 1:
a) x2 + y2 - 2x + 10y + 26 = 0
<=> (x2 - 2x + 1) + (y2 + 10y + 25) = 0
<=> (x - 1)2 + (y + 5)2 = 0 (*)
Vì (x - 1)2 \(\ge\)0; (y + 5)2 \(\ge\)0
(*) <=> x - 1 = 0 hay y + 5 = 0
<=> x = 1 I <=> y = -5
b) 64x3 + 48x2 + 12x + 1 = 27
<=> 64x3 - 32x2 + 80x2 - 40x + 52x + 1 - 27 = 0
<=> 64x3 - 32x2 + 80x2 - 40x + 52x - 26 = 0
<=> 64x2(x - \(\frac{1}{2}\)) + 80x(x - \(\frac{1}{2}\)) + 52(x - \(\frac{1}{2}\)) = 0
<=> (x - \(\frac{1}{2}\))(64x2 + 80x + 52) = 0
<=> (x - \(\frac{1}{2}\))[(8x)2 + 2.8x.5 + 52 + 27) = 0
<=> (x - \(\frac{1}{2}\))[(8x + 5)2 + 27) = 0
<=> x - \(\frac{1}{2}\)= 0 (vì (8x + 5)2 + 27 > 0
<=> x = \(\frac{1}{2}\)
Bài 2:
a) x2 + 2xy + y2
= (x + y)2
= 32 = 9
b) x2 - 2xy + y2
= x2 + 2xy + y2 - 4xy
= (x + y)2 - 4xy
= 32 - 4.(-10)
= 9 + 40 = 49
c) x2 + y2
= x2 + 2xy + y2 - 2xy
= (x + y)2 - 2xy
= 32 - 2.(-10)
= 9 + 20 = 29
cảm ơn nha!