K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

a) \(2x^4+3x^3-16x-24=0\)

\(\left(2x^4+3x^3\right)-\left(16x+24\right)=0\)

\(x^3.\left(2x+3\right)-8\left(2x+3\right)=0\)

\(\left(x^3-8\right)\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3-8=0\\2x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^3=8\\2x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)

vậy \(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

Ukm

It's very hard

l can't do it 

Sorry!

 
27 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt

b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)

\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)

Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)

\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)

Từ đó tính đc x

d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)

\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+5=a\), khi đó pt có dạng:

\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

2 tháng 9 2017

Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0 

=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0

=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0

=> 24x - 10 = 0

=> 24x = 10

=> x = 5/12

Vạy x = 5/12

2 tháng 9 2017

Bài 4 : Ta có : M = x2 + 6x - 1

=> M = x2 + 6x + 9 - 10

=> M = (x + 3)2 - 10

Vì : \(\left(x+3\right)^2\ge0\forall x\)

Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)

Vậy Mmin = -10 khi x = -3

I don't now

or no I don't

..................

sorry

26 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow\)\(x^4-x^3-7x^2+7x-6x+6=0\)

\(\Leftrightarrow\)\(x^3\left(x-1\right)-7x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3-7x-6\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)

đến đây lm tiếp

26 tháng 10 2020

Bài 1

1) 4x - x2 - 4 = 0

⇔ -( x2 - 4x + 4 ) = 0

⇔ -( x - 2 )2 = 0

⇔ x - 2 = 0

⇔ x = 2

2) 4( x - 1 )2 - ( 5 - 2x )2 = 0

⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0

⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0

⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0

⇔ ( 4x - 7 ).3 = 0

⇔ 4x - 7 = 0

⇔ x = 7/4

3) 9( x - 2 )2 - 4( 3 - x )= 0

⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0

⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0

⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0

⇔ x( 5x - 12 ) = 0

⇔ x = 0 hoặc 5x - 12 = 0

⇔ x = 0 hoặc x = 12/5

4) x2 - 6x + 5 = 0

⇔ x2 - 5x - x + 5 = 0

⇔ x( x - 5 ) - ( x - 5 ) = 0

⇔ ( x - 5 )( x - 1 ) = 0

⇔ x - 5 = 0 hoặc x - 1 = 0

⇔ x = 5 hoặc x = 1

26 tháng 10 2020

Bài 2.

1) x2 - z2 + y2 - 2xy

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

2) a3 - ay - a2x + xy

= ( a3 - a2x ) - ( ay - xy )

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

3) 2xy + 3z + 6y + xz

= ( 2xy + 6y ) + ( xz + 3z )

= 2y( x + 3 ) + z( x + 3 )

= ( x + 3 )( 2y + z )

4) x2 + 2xz + 2xy + 4yz

= ( x2 + 2xy ) + ( 2xz + 4yz )

= x( x + 2y ) + 2z( x + 2y )

= ( x + 2y )( x + 2z )

5) ( x + y + z )3 - x3 - y3 - z3

= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3

= 3( x + y )( y + z )( x + z )

I don't now 

sorry 

...................

nha

27 tháng 7 2018

b)  \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)

Đặt:  \(3x+3=a\)pt trở thành:

\(\left(a-5\right)a^2\left(a+5\right)+144=0\)

\(\Leftrightarrow\)\(a^4-25a^2+144=0\)

\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)

đến đây bạn tìm a rồi tính x

c)  \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)

Đặt   \(4x-5=a\)pt trở thành:

\(a\left(a-1\right)\left(a+1\right)-72=0\)

\(\Leftrightarrow\)\(a^3-a-72=0\)

p/s: ktra lại đề

d)  \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)

\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)

\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)

\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)

đến đây làm nốt

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)