K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

19 tháng 7 2020

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

2 tháng 5 2017

Bài 1:

a, Ta có: (x - 1)2 \(\ge\)0 với mọi x

=> A = (x - 1)2 + 2016 \(\ge\)2016 

Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1

Vậy GTNN của A = 2016 tại x = 1

b, Ta có: |x + 4| \(\ge\)0 với mọi x

=> B = |x + 4| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4

Vây GTNN của B = 2017 tại x = -4

Bài 2:

a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x

=> P = 2010 - (x + 1)2016 \(\ge\)2010

Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1

Vậy GTLN của P = 2010 tại x = -1

b, Ta có: |3 - x| \(\ge\)0 với mọi x

=> Q = 2010 - |3 - x| \(\ge\)2010

Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3

Vậy GTLN của Q = 2010 tại x = 3

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

13 tháng 3 2015

 Bài 1

a) có (x-1)^2 lon hơn hoặc bằng 0

       => ( x-1)^2 + 2008  lớn hơn hoac bang 2008

       => A  lớn hơn hoac bang 2008

 vay giai tri nho nhát la .2008

b) có | x+4| lon hon hoặc bang 0

=>| x+4| + 1996 lon hon hoặc bang 1996

=> B lon hon hoặc bang 1996

vay B nho nhất  la 1996

bai 2 

a)-( x+1)^2008 nho hơn hoặc bang 0

=> 2010- (x+ 1)^2008 nho hơn hoặc bang  2010

=> P nho hon hoặc bang 2008

vay gia tri lon nhất của P là 2008

những phần kia tương tự như vậy, nhớ like nhé

 

 

22 tháng 8 2017

a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b)
x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)

1 tháng 5 2019

a.\(A=\left(x-1\right)^2+2008\)

Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)

Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=0+1\)

\(\Leftrightarrow x=1\)

Vậy Amin = 2008 \(\Leftrightarrow\) x = 1

1 tháng 5 2019

b. \(B=\left|x+4\right|+1996\)

Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)

Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=0-4\)

\(\Leftrightarrow x=-4\)

Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)

14 tháng 5 2020

Bạn hỏi câu này bên Hoidap247 đúng không nè? :)

a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)

Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

Vậy GTLN của P = 2019 tại \(x=-1\).

b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)

\(\Rightarrow2020-\left|2019-x\right|\le2020\)

Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

Vậy GTLN của Q = 2020 tại \(x=2019\).

14 tháng 5 2020

a) \(P=2019-\left(x+1\right)^{2020}\)

Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)

Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)

<=> x+1=0

<=> x=-1

Vậy MaxA=2019 đạt được khi x=-1

b) \(Q=2020-\left|2019-x\right|\)

Ta có \(\left|2019-x\right|\ge0\forall x\)

\(\Rightarrow2020-\left|2019-x\right|\ge2020\)

Dấu "=" xảy ra <=> |2019-x|=0

<=> 2019-x=0

<=> x=2019

Vậy MaxQ=2020 đạt được khi x=2019