Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)
Vì \(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.
Lại có:
\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)
\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)
\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)
\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)
Vậy \(MAX_B=3,5\) khi \(x=y=0\)
5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)
Mà x nguyên tố \(\Rightarrow x=2\)
Thay x=2 vào ta có
51.2+26y=2000
\(\Rightarrow102+26y=2000\)
\(\Rightarrow26y=1898\)
\(\Rightarrow y=73\)
Vậy \(x=2,y=73\)
\(A=\left(x-2\right)^2+2\)
Có: \(\left(x-2\right)^2\ge0với\forall x\\ \Rightarrow\left(x-2\right)^2+2\ge0\\ \Leftrightarrow A\ge0\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy....
\(B=\left(2x+1\right)^4-1\)
Có: \(\left(2x+1\right)^4\ge0với\forall x\\ \Rightarrow\left(2x+1\right)^4-1\ge-1\\ \Leftrightarrow B\ge-1\)
Dấu "=" xảy ra khi \(\left(2x+1\right)^4=0\Leftrightarrow x=-\frac{1}{2}\)
VẬy...
\(C=\left(x^2-16\right)^2+\left|y-3\right|-2\)
Có: \(\left(x^2-16\right)^2\ge0với\forall x\\ \left|y-3\right|\ge0với\forall x\\ \Rightarrow\left(x^2-16\right)^2+\left|y-3\right|-2\ge2\\ \Leftrightarrow C\ge2\)
Dấu "=" xảy ra khi \(\left(x^2-16\right)^2=0\Leftrightarrow x\in\left\{\pm16\right\}\); \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy...
\(D=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
Có: \(\left(x+2\right)^2\ge0với\forall x\\ \left(y-\frac{1}{5}\right)^2\ge0với\forall x\\ \Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\\ \Leftrightarrow D\ge-10\)
Dấu "=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\);\(\left(y-\frac{1}{5}\right)^2=0\Leftrightarrow x=\frac{1}{5}\)
Vậy...
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)