Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,/4,3-x/ >/ 0 với mọi x
=>3,7+/4,3-x/ >/ 3,7 với mọi x
=>GTNN của P là 3,7
dấu "=" xảy ra<=>4,3-x=0<=>x=4,3
Vậy....
b,/2x-1/5/ >/ 0 với mọi x
=>5,5-/2x-1/5/ </ 5,5 với mọi x
=> GTLN của Q là 5,5
Dấu "=" xảy ra<=>2x-1/5=0<=>2x=1/5<=>x=1/10
Vậy...
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(\left|x+1,5\right|-4,5\ge-4,5\)
\(MinB=-4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
\(C=1,5-\left|x+1,1\right|\le1,5\)
\(MinC=1,5\Leftrightarrow x+1,1=0\Rightarrow x=-1,1\)
Ta có : \(\left|4,3-x\right|\ge0=>3,7+\left|4,3-x\right|\ge3,7\)
Dấu "=" xảy ra khi \(4,3-x=0=>x=4,3\)
Vậy \(A_{min}=3,7\)khi \(x=4,3\)
Vì \(|4,3-x|\ge0;\forall x\)
\(\Rightarrow3,7+|4,3-x|\ge3,7+0;\forall x\)
Hay \(A\ge3,7;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|4,3-x|=0\)
\(\Leftrightarrow x=4,3\)
Vậy MIN A =3,7 \(\Leftrightarrow x=4,3\)
Ta có: |4,3-x| >=0 (với mọi x)
=> 3,7+|4,3-x| >= 3,7
Dấu"="xảy ra khi 4,3-x=0 = > x=4,3
Vậy Amin = 3,7 <=> x=4,3
Chúc bạn học tốt!
Vì 3.7>0 9laf một số dương)
=> để A nhỏ nhất thì /4.3+x/ = 0
=> 4.3+x=0
=> x= -4.3
oki nhá