K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn...
Đọc tiếp

Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.

Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn vị này có không quá 1000 người.

Bài 15: Tìm các cặp số tự nhiên x,y, biết:

3) * \(2y\times\left(x+1\right)-x-7=0\)                             4) * \(xy-2x+y=15\)

Bài 16*: Tìm các số tự nhiên a,b (a<b), biết:

1) a + b = 336 và ƯCLN(a,b) = 24.      2) ƯCLN(a,b) = 6 và BCNN(a,b) = 36.      3) BCNN(a,b) = 150 và a.b = 3750.

4) a.b = 180 và BCNN(a,b)=20.ƯCLN(a,b).     5) a + b = 40 và BCNN(a,b) = 7.ƯCLN(a,b).      6) ƯCLN(a,b) + BCNN(a,b) = 21.

Bài 17*: So sánh các lũy thừa sau: a) 828 và 1521. b) 591 và 1159. c) 3319 và 1523.

Bài 18*: Chứng minh rằng:

1) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau.

2) \(\left(5n+1\right)\) và \(\left(6n+1\right)\) là hai số nguyên tố cùng nhau \(\left(n\in N\right)\)

3) BCNN\(\left(6n+1;n\right)=\left(6n2+n\right)\) với \(\left(n\in N\right)\)

4) \(S=31+32+33+...+3100⋮120\)

5) \(S=102015+8⋮18\)

6) Nếu \(\left(7a+2b;31a=9b\right)⋮2015\Rightarrow a,b⋮2015\left(a,b\in N\right)\)

7) Nếu p và p + 4 là hai số nguyên tố (p>3) thì p + 8 sẽ phải là hợp số.

8) Nếu a và b là hai số nguyên tố cùng nhau thì hai số \(13a+4b\)\(15a+7b\)hoặc cũng nguyên tố cùng nhau hoặc \(⋮31\)

Bài 19*:

1) Tìm ƯCLN\(\left(2n+1;9n+5\right)\)với\(n\in N\)

2) Tìm số nguyên tố p sao cho: \(p+4;p+10;p+14\)đều là số nguyên tố.

3) Tìm ba số lẻ liên tiếp đều là số nguyên tố.

4) Tìm số tự nhiên a nhỏ nhất thỏa mãn:\(a\div4\left(dư3\right),a\div17\left(dư9\right),a\div19\left(dư13\right)\)

5) Hãy tính tổng các ước số của \(A=217\times5\)

6) \(S=1+5+52+53+...+520\)Tìm số tự nhiên n thỏa mãn: \(4S=5n\)

7) Tìm số tự nhiên n, biết \(p=\left(n-2\right)\times\left(n2+n-5\right)\)là số nguyên tố.

8) Tìm số tự nhiên n, biết \(1+3+5+..+\left(2n=1\right)=169\)

9) Tìm số nguyên tố bé nhất trong ba số nguyên tố có tổng bằng 132.

10) Tìm hai số tự nhiên nhỏ nhất có đúng 18 ước số.

11) Tìm ba số tự nhiên liên tiếp có tích bằng 2184.

Bài 20*: 

a) Cho p và 2p + 1 là hai số nguyên tố (p>3). Hỏi 4p + 1 là số nguyên tố hay hợp số?

b) Một số chia cho 21 dư 2 và chia 12 dư 5. Hỏi số đó chia cho 84 thì dư bao nhiêu?

Nhớ nhanh lên nhé, đây là các bài trong đề cương của mình, tuần sau mình phải thi học kì 1 rồi!!! Nhanh lên!!! Mình chờ đấy!!!

3
5 tháng 12 2019

mình làm ơn đấy, trả lời giúp mình đi!!!!!!

help me please, I will repay you!!!!!!

8 tháng 12 2019

you just help me, I will repay you everywhere!!!!!!

Giúp mình làm đề toán này nhé !Bài 1:Cho biểu thức : A =\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)a) Rút gọn biểu thức b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a , là một phân số tối giản.Bài 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc​​ sao cho abc=\(^{n^2-1}\)  và cba = \(\left(n-2\right)^2\)Bài 3:a. Tìm n để \(n^2+2006\) là 1 số chính phương.b.Cho n là số...
Đọc tiếp

Giúp mình làm đề toán này nhé !

Bài 1:

Cho biểu thức : A =\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a) Rút gọn biểu thức 

b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a , là một phân số tối giản.

Bài 2 : 

Tìm tất cả các số tự nhiên có 3 chữ số abc​​ sao cho abc=\(^{n^2-1}\)  và cba = \(\left(n-2\right)^2\)

Bài 3:

a. Tìm n để \(n^2+2006\) là 1 số chính phương.

b.Cho n là số nguyên tố lớn hơn 3 . Hỏi \(n^2+2006\) là số nguyên tố hay là hợp số

Bài 4 : 

a. cho a,b,c  ϵ  N* . Hãy so sánh \(\frac{a+n}{b+n}\) và \(\frac{a}{b}\) 

b.cho A =\(\frac{10^{11}-1}{10^{12}-1}\)    ;     B= \(\frac{10^{10}+1}{10^{11}+1}\) . so sánh A và B.

Bài 5:

cho 10 số tự nhiên bất kì :  \(a_1,a_2,.......,a_{10}^{_{ }}\) . Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Bài 6 : 

Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau . Không có ba đường thẳng nào đồng qui . Tính số giao điểm của chúng .

 

Hết rùi đó, giúp mình nha. Làm được Một trong sáu bài đó là được rùi. Thank you.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
30 tháng 9 2016

Bài 6: 

Công thức tính số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là\(\frac{n\left(n-1\right)}{2}\) (giao điểm)

Vậy số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là \(\frac{2006-\left(2006-1\right)}{2}=2011015\left(giaođiểm\right)\)

 

30 tháng 9 2016

Bài 5:

Đặt S1 = a; S2 = a1 + a2  ; S3 = a1 + a2 + a; S10 = a1 + a2 + a3 + ... + a10

Xét 10 số S1, S2,...,S10 có hai trường hợp:

+ Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak , k từ 1 đến 10) => tổng của k số a1 , a2,...,a\(⋮10\left(đpcm\right)\)

+ Nếu không có số nào trong 10 số S1,S2,...,S10 tận cùng là 0 => chắc chắn phải có ít nhất hai số nào đó có chữ số tận cùng giống nhau. Ta gọi hai số đó là Sm và Sn \(\left(1\le m< n\le10\right)\) 

Sm = a+ a2 + ... + a(m)

Sn = a1 + a2 + ... + a(m) + a(m+1)+ a(m+2) + ... + a(n)

=> S- S= a(m+1) + a(m+2) + ... + a(n) tận cùng là 0

=> Tổng của n - m số a(m+1), a(m+2),..., a(n) \(⋮\) 10 (đpcm)

 

Bài 1:a) 5(x + 2) - 4(x - 3) = 17b) xy + 2x - y = 2c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)Bài 2:a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5c) Cho A = 3 - 32 + 33 - 34 + ... + 32017Chứng tỏ 4A - 3 là một số chính phương.Bài 3:a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)Chứng minh rằng...
Đọc tiếp

Bài 1:

a) 5(x + 2) - 4(x - 3) = 17

b) xy + 2x - y = 2

c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)

Bài 2:

a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)

b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5

c) Cho A = 3 - 32 + 33 - 34 + ... + 32017

Chứng tỏ 4A - 3 là một số chính phương.

Bài 3:

a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?

b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)

Chứng minh rằng B\(⋮\)9

Bài 4:

a) Nếu chia 3698 và 736 cho cùng một số tự nhiên thì ta được số dư tương ứng là 26 và 56. Hỏi số chia phải bằng bao nhiêu?

b) Chứng minh rằng: Nếu abcd\(⋮\)101 thì ab - cd = 0

Bài 5:

a) Trên đường thẳng xy lấy một điểm O và hai điểm M, N sao cho OM = 2 cm, ON = 3 cm. Vẽ các điểm A, B trên đường thẳng xy sao cho điểm M là trung điểm của đoạn thẳng OA, N là truung điểm của đoạn OB. Tính AB?

b) Trên tia Ox lấy 2 điểm B và C sao cho C nằm giữa O và B. Gọi M và N lần lượt là trung điểm của OC và CB. Tính MN biết MN + OB = 9 cm.

Bài 6:

Tìm ƯCLN của \(\frac{n.\left(n+1\right)}{2}\)và 2n + 1 (n\(\in\)N*)

Hạn nộp đáp án là trưa ngày 2/1/2018.

 

0
5 tháng 7 2021

Bài 1 :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)

\(\frac{5}{x}=\frac{1+2y}{6}\)

=>  x ( 1+2y ) = 5 . 6 

=> x ( 2y+1 ) = 30 

=> x;2y+1 \(\in\) Ư(30)

vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}

             Ta có bảng 

2y+113515-1-3-5-15
x301062-30-10-6-2
y0127-1-2-3-8

Vậy các cặp x;y  tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\) 

5 tháng 7 2021

Bài 2 , b 

(3n+2) \(⋮\) n-1

=> 3(n-1) + 5 \(⋮\) n-1

Vì 3(n-1) \(⋮\) n-1  => 5 \(⋮\) n-1

hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}

 n \(\in\) {2;6;0;-4}

6 tháng 5 2017

Phương Anh à tớ linh trên lớp cậu nè 

tớ trợ giúp câu b

nhóm 4 số vào sau đó lấy ssh chia 4 tìm ra số nhóm sau ddoss tính từng nhóm ra là -4 rồi nhân vói số nhóm là ra kết quả

6 tháng 5 2017

1. - 1300

2. PS A không thể rút gọn

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.