Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lập bảng:
a2 | -4 (loại) | -2 (loại) | -1 (loại) | 1 | 2 (loại) | 4 |
b-2016 | 1 | 2 | 4 | -4 | -2 | -1 |
+) Với a2 = 1 thì:
a2.(b - 2016) = 12.(-4) = (-1)2.(-4)
=> a = + 1; b - 2016 = -4
=> a = + 1; b = 2020
+) Với a2 = 4 thì:
a2.(b - 2016) = 22.(-1) = (-2)2.(-1)
=> a = + 2; b - 2016 = -1
=> a = + 2; b = 2015
Vậy các cặp (x; y) thỏa mãn là: (1; 2020); (-1; 2020); (2; 2015); (-2; 2015).
a,Chịu
b,
⇔(x2+1)(x+1)=(2y+1)2⇔(x2+1)(x+1)=(2y+1)2
Dễ chứng minh x2+1x2+1 và x+1x+1 nguyên tố cùng nhau, do đó x2+1x2+1 và x+1x+1 đều là số chính phương, mặt khác x2x2 và x2+1x2+1 là hai số nguyên liên tiếp, nên x=0x=0, tới đây thay vào phương trình ban đầu
a) Ta có: |a| \(\ge\) 0 với mọi a
|b| \(\ge\) 0 với mọi b
Mà |a| + |b| = 0
=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Vậy a = 0; b = 0
b) Ta có:
|a + 5| \(\ge\) 0 với mọi a
|b - 2| \(\ge\) 0 với mọi b
Mà |a + 5| + |b - 2| = 0
=> \(\left\{{}\begin{matrix}a+5=0\\b-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=2\end{matrix}\right.\)
Vậy a = -5; b = 2
Vì \(\left|a\right|\ge0;\left|b\right|\ge0\)
\(\Rightarrow\left|a\right|+\left|b\right|\ge0\)
Mà : \(\left|a\right|+\left|b\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|=0\\\left|b\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Vậy a = 0 , b = 0
b, Vì \(\left|a+5\right|\ge0;\left|b-2\right|\ge0\)
\(\Rightarrow\left|a+5\right|+\left|b-2\right|\ge0\)
Mà : \(\left|a+5\right|+\left|b-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a+5\right|=0\\\left|b-2\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+5=0\\b-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-5\\b=2\end{matrix}\right.\)
Vậy a = -5 ; b = 2
a) x(x+2) > 0
=> x2 + 2x > 0
Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x > 0 thì 2x > 0 => x>0
Vậy với x>0 thì x(x+2) > 0
b) ( x -1 )( x + 3) < 0
<=> x2 + 3x - x - 3 > 0
<=> x2 + 2x - 3 > 0
Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x - 3 < 0 thì 2x - 3 < 0 => 2x < 3 => x < 3/2
Vậy với x<3/2 thì ( x -1 )( x + 3) < 0
c) ( 1 - x )( y + 1 ) =-3
Ta có bảng:
1 - x | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 0 | 2 | -2 | 4 |
y | 2 | -4 | 0 | -2 |
Vậy với x thuộc {…} và y thuộc {…} thì ( 1 - x )( y + 1 ) =-3
Làm mẫu câu a nha
a) \(x\left(x+2\right)>0\)
Th1 : \(\hept{\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>-2\end{cases}\Rightarrow}x>0}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< -2\end{cases}}\Rightarrow x< -2}\)
Vậy ta có : \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)
tớ biết nhưng cậu phải cho tớ đã