Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a, \(\left(x-1\right)\left(y+1\right)=5\)
\(\Leftrightarrow x-1;y+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x - 1 | 1 | -1 | 5 | -5 |
y + 1 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 4 | -6 | 0 | -2 |
d, \(\left(3-x\right)\left(xy+5\right)=-1\)
\(\Leftrightarrow3-x;xy+5\inƯ\left(-1\right)=\left\{\pm1\right\}\)
3 - x | 1 | -1 |
xy + 5 | -1 | 1 |
x | 2 | 4 |
y | -3 | -1 |
f, \(\left(x-7\right)\left(y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\y+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\y=-2\end{cases}}}\)
Bn làm nốt nhé !
a, \(\left(x-1\right)\left(y+1\right)=5\)
\(< =>\left(x-1\right)\left(y+1\right)=1.5=5.1=-1.\left(-5\right)=-5.\left(-1\right)\)
x-1 | 1 | 5 | -1 | -5 | |||
y+1 | 5 | 1 | -5 | -1 | |||
x | 2 | 6 | 0 | -4 | |||
y | 4 | 0 | -6 | -2 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
b, \(\left(x+2\right)\left(y-3\right)=-3\)
\(< =>\left(x+2\right)\left(y-3\right)=-1.3=-3.1\)
x+2 | -1 | -3 | |
y-3 | 3 | 1 | |
x | -3 | -5 | |
y | 6 | 4 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
c, \(\left(x+2\right)\left(y-1\right)=3\)
\(< =>\left(x+2\right)\left(y-1\right)=1.3=3.1=-1.\left(-3\right)=-3.\left(-1\right)\)
x+2 | 1 | 3 | -1 | -3 |
y-1 | 3 | 1 | -3 | -1 |
x | -1 | 1 | -3 | -5 |
y | 4 | 2 | -2 | 0 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
d,\(\left(3-x\right)\left(xy+5\right)=-1\)
\(< =>\left(3-x\right)\left(xy+5\right)=1.\left(-1\right)=-1.1\)
3-x | -1 | 1 | |
xy+5 | 1 | -1 | |
x | 4 | 2 | |
xy | -4 | -6 | |
y | -1 | -3 |
Vậy ta có các cặp số x,y thỏa mãn đk sau : ...
2 câu sau dễ tự làm
\(\frac{x}{2}=\frac{-1}{y}\Rightarrow xy=-2\Rightarrow x;y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x | 1 | -1 | 2 | -2 |
y | -2 | 2 | -1 | 1 |
\(\frac{x}{-3}=\frac{1}{y}\Rightarrow xy=-3\Rightarrow x;y\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x | 1 | -1 | 3 | -3 |
y | -3 | 3 | -1 | 1 |
tương tự 2 phần dưới
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
a)
(x+1)(y-2) = 3
=> x+1 và y-2 là các ước của 3
Ư(3) = {1; -1; 3; -3}
Lập bảng giá trị:
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy các cặp (x,y) cần tìm là:
(0; 5); (2; 3); (-2; -1); (-4; 1).
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Tìm cặp số nguyên (x,y) biết:
a)x-1/9+1/3=1/4+2
b)x/5-2/y=2/15
c)x/7-1/2=1/y+1
Toán lớp 6Liên ph
ai tích min tích lại nhà
Do x, y nguyên
nên : x-2 và y-3 cũng đạt giá trị nguyên
Ta có : 5 = 1.5 = (-1).(-5)
Bảng giá trị :
Vậy (x;y)=(3;8);(7;4);(1;-2);(-3;2)
Do x, y nguyên
Nên 1-x và y+1 cũng đạt giá trị nguyên
Ta có : 3=1.3=(-1).(-3)
Bảng giá trị :
Vậy (x;y)=(0;2);(-2;0);(2;-4);(4;-2)