K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2023

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ;  B = \(\dfrac{2020+2021}{2021+2022}\)

B = \(\dfrac{2020+2021}{2021+2022}\)   = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)

\(\dfrac{2020}{2021}\)   > \(\dfrac{2020}{2021+2022}\)

\(\dfrac{2021}{2022}\)     > \(\dfrac{2021}{2021+2022}\)

Cộng vế với vế ta có:

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B

Vậy A > B

 

15 tháng 4 2023

A =  \(\dfrac{10^{10}-1}{10^{11}-1}\) 

\(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1

B = \(\dfrac{10^{10}+1}{10^{11}+1}\)

\(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\)  = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1

Vì 10 A< 1< 10B

Vậy A < B

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$

$=1-\frac{9}{10^{2021}-1}>1$

$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$

$=1+\frac{9}{10^{2022}+1}<1$

$\Rightarrow 10A> 1> 10B$

Suy ra $A> B$

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

16 tháng 5 2022

Ta có:

\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )

Suy ra:  \(A>B\)

1 tháng 5 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}\) < 1 thì \(\dfrac{a}{b}\) < \(\dfrac{a+n}{b+n}\) ( a ϵ N; b; n ϵ N* )

Ta có \(B=\dfrac{10^{2021}+1}{10^{2022}+1}< \dfrac{10^{2021}+10}{10^{2022}+10}=\dfrac{10\left(10^{2020}+1\right)}{10\left(10^{2021}+1\right)}=\dfrac{10^{2020}+1}{10^{2021}+1}=A\)

Vậy A > B

1 tháng 5 2023

A = \(\dfrac{10^{2020}+1}{10^{2021}+1}\) ⇒ 10\(\times\) A = \(\dfrac{10^{2020}+1}{10^{2021}+1}\) \(\times\) 10

10A = \(\dfrac{10^{2021}+10}{10^{2021}+1}\) =1+\(\dfrac{9}{10^{2021}+1}\)

B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\) ⇒ 10 \(\times\) B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\) \(\times\) 10 

10B = \(\dfrac{10^{2022}+10}{10^{2022}+1}\) = 1 + \(\dfrac{9}{10^{2022}+1}\)

Vì \(\dfrac{9}{10^{2021}+1}\) > \(\dfrac{9}{10^{2022}+1}\)

Vậy 10A > 10B ⇒ A > B 

\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)

\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà 10^2023+1>10^2022+1

nên A<B

25 tháng 4 2022

=)

25 tháng 4 2022

Help me

\(10A=\dfrac{10^{2021}+1+9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10^{2022}+1+9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà \(10^{2021}+1< 10^{2022}+1\)

nên A>B