Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(B=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)
\(=x^4+y^4+z^4-2x^2y^2-2z^2x^2+2y^2z^2-4y^2z^2\)
\(=\left(x^2-y^2-z^2\right)^2-4y^2z^2\) \(=\left(x^2-y^2-z^2-2yz\right)\left(x^2-y^2-z^2+2yz\right)\)
\(=\left[x^2-\left(y+z\right)^2\right]\left[x^2-\left(y-z\right)^2\right]\)
\(=\left(x-y-z\right)\left(x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)
b, Nếu x,y,z là ba cạnh tam giác. áp dụng BĐT tam giác ta có:
\(x-y-z=x-\left(y+z\right)< 0\)
\(\hept{\begin{cases}x+y+z>0\\x+z-y>0\\x+y-z>0\end{cases}}\)
=> B < 0 => đpcm
Trả lời cho mình câu này nữa nhé
https://olm.vn/hoi-dap/question/1115850.html
a) \(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x+2\right)\left(x+2+x-2\right)+\left(x-2\right)\left(x+2+x-2\right)\)
\(=2x\left(x+2\right)+2x\left(x-2\right)\)
\(=2x\left(x+2+x-2\right)\)
\(=2x\cdot2x=4x^2\)
b) \(2x^2-2xy-4y^2\)
\(=\left(2x^2-4xy\right)+\left(2xy-4y^2\right)\)
\(=2x\left(x-2y\right)+2y\left(x-2y\right)\)
\(=\left(2x+2y\right)\left(x-2y\right)\)
\(=2\left(x+y\right)\left(x-2y\right)\)
c) \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
d) \(4x\left(x-2y\right)-8y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
\(=4\left(x-2y\right)\left(x-2y\right)\)
\(=4\left(x-2y\right)^2\)
b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)
a) Ta có: \(4x\left(2y-z\right)+7y\left(z-2y\right)\)
\(=4x\left(2y-z\right)-7y\left(2y-z\right)\)
\(=\left(4x-7y\right)\left(2y-z\right)\)
b) Ta có: \(2x\left(x+3\right)+\left(3+x\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
a, \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)
\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+z\right)+y\left(x+z\right)\right]\)
\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
b, \(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
\(b,x^2+y^2-2x-2y-2xy\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
\(=x^2+y^2+1-2x-2y+2xy-4\)
\(=\left(x+y-1\right)^2-2^2\)
\(=\left(x+y-3\right).\left(x+y+1\right)\)
a)5x2y-10xy2
=5xy(x-2y)
b,:4x(2y-z)+7y(z-2y)
=4x(2y-z)-7y(2y-z)
=(2y-z)(4x-7y)
c,:y(x-z)+7(z-x)
=y(x-z)-7(x-z)
=(x-z)(y-7)
d)36-12x+x^2
=x2-2.x.6+62
=(x-6)2
e) (x-5)^2-16
=(x-5)2-42
=(x-5-4)(x-5+4)
=(x-9)(x-1)
f) 8x^3+1/27
=(2x)3+(1/3)3
=(2x+1/3)(4x2+2/3.x+1/9)
\(=\dfrac{2\left(x-2y+z\right)^3+4\left(x-2y+z\right)^2}{2\left(x-2y+z\right)}=\left(x-2y+z\right)^2+2\left(x-2y+z\right)\)
Anh chỉ em pp học Toán giỏi như anh được ko ạ rất thích môn Toán nên cũng rất hâm mộ anh