Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)
Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:
c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
riêng câu này ta thay x = 9 vào luôn, vậy ta có:
\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)
\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)
\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)
\(=-9+10\)
\(=1\)
a,A=x3+11x2+30x
A=x2(x+5)+6x2+30x
A=x2(x+5)+6x(x+5)
A=(x2+6x)(x+5)=x(x+5)(x+6)
e,( x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
=(x2+8x+11-4)(x2+8x+11+4)+15
=(x2+8x+11)-1=(x2+8x+10)(x2+8x+12)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
a: \(=6x^3-12x^2+x^2-2x+x-2\)
\(=\left(x-2\right)\left(6x^2+x+1\right)\)
b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)
\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)
\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)
c: \(=4x^3+x^2+4x^2+x+4x+1\)
\(=\left(4x+1\right)\left(x^2+x+1\right)\)
a) \(4x^4-21x^2y^2+y^4=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2=\left(2x^2-5xy+y^2\right)\left(2x^2+5xy+y^2\right)\)
b) \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]\)
\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]=x\left(x^2-1\right)\left(x^2-4\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
c ) \(x^3+5x^2+3x-9=\left(x^3-x^2\right)+\left(6x^2-6x\right)+\left(9x-9\right)\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x^2+6x+9\right)\left(x-1\right)=\left(x+3\right)^2\left(x-1\right)\)
d ) \(x^{16}+x^8-2=x^{16}-x^8+2x^8-2=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8+2\right)\left(x^8-1\right)=\left(x^8+2\right)\left(x^4-1\right)\left(x^4+1\right)\)
\(=\left(x^8+2\right)\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)=\left(x^8+2\right)\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\)
e ) \(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
\(\Leftrightarrow x\left[\left(x^2-5x\right)-\left(6x-30\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
\(\Rightarrow x=0orx=5orx=6\) (or hoặc)
Vậy \(x\in\left\{0;5;6\right\}\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
Bài 1
A,7x − 6x 2 − 2 = −(6x 2 − 7x + 2)
= −(6x 2 − 3x − 4x + 2)
= −[3x(2x − 1) − 2(2x − 1)] = −(3x − 2)(2x −1)
b,\(2x^2+3x-5\)
=\(2x^2-2x+5x-5\)=\(2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)