K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Bài 4:

Đặt P =\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(P=a-\dfrac{a^2}{a+b}+b-\dfrac{b^2}{b+c}+c-\dfrac{c^2}{c+a}\)

\(P=a+b+c-\left(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\right)\le a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

\(P\le a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi a = b = c

13 tháng 6 2017

Bài 3 :

\(Ta.có:2x^2+3y^2-2z^2=0\)

\(\Leftrightarrow3y^2=2\left(z^2-x^2\right)=2\left(z-x\right)\left(z+x\right)\)

\(y>0=>3y^2>0;z+x>0\left(x,z>0\right)\)

\(=>z-x>0=>z>x\left(1\right)\)

\(2x^2+3y^2-2z^2=2x^2+y^2=2\left(z^2-y^2\right)\)

\(=>z>y\left(2\right)\)

\(\left(1\right),\left(2\right)=>z>x,y\)

Vậy............................

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

21 tháng 10 2021

Bài 1: 

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của DC

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Bài 1: Giải các phương trình và bất phương trình sau: a) \(x^2-x=0\) b)\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x^2+5}{x\left(x-5\right)}\) c)\(2x\left(x-3\right)-x\left(2x+1\right)>5-x\) Bài 2: Giải bài toán sau bằng cách lập phương trình: Một mảnh đất hình chữ nhật có chu vi là 56m. Nếu tăng chiều dài thêm 4m đồng thời giảm chiều rộng đi 2m thì được mảnh đất hình chữ...
Đọc tiếp

Bài 1: Giải các phương trình và bất phương trình sau:

a) \(x^2-x=0\) b)\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x^2+5}{x\left(x-5\right)}\) c)\(2x\left(x-3\right)-x\left(2x+1\right)>5-x\)

Bài 2: Giải bài toán sau bằng cách lập phương trình:

Một mảnh đất hình chữ nhật có chu vi là 56m. Nếu tăng chiều dài thêm 4m đồng thời giảm chiều rộng đi 2m thì được mảnh đất hình chữ nhật mới có diện tích nhỏ hơn diện tích mảnh đất ban đầu là 4m2. Hãy tính chiều dài, chiều rộng mảnh đất ban đầu.

Bài 3: Cho tam giác ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh: △AFH ∼ △ADB.

b) Chứng minh: BH.HE = CH.HF.

c) Gọi I là trung điểm của BC, kẻ đường thẳng qua H vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh: MH = HN

Bài 4: Cho các số thực a, b thỏa mãn a3 + b3 = 2. Chứng minh rằng a + b ≤ 2

(Bài 4 không làm được thì không sao vì đó là bài nâng cao)

0
31 tháng 10 2018

A B C D O F E H K I

14 tháng 11 2022

a: Xét tứ giác AECF có

O là trung điểm chung của AC và EF

nên AECF là hình bình hành

b: Xét tứ giác AKCH có

AK//CH

AH//CK

Do đó: AKCH là hình bình hành

Suy ra: AH=CK

10 tháng 11 2018

a) Ta có: \(AB//CD\left(hbhABCD\right)\Rightarrow AM//DN\)

\(AB=CD\left(hbhABCD\right)\Rightarrow AM=DN=\dfrac{1}{2}AB=\dfrac{1}{2}CD\)

Tứ giác AMND có: \(AM//DN;AM=DN\left(cmt\right)\)

\(\Leftrightarrow AMND\) là hbh ( dấu hiệu)

b) Ta có: \(AB//CD\left(hbhABCD\right)\Rightarrow MB//DN\)

\(AB=CD\left(hbhABCD\right)\Rightarrow BM=DN=\dfrac{1}{2}AB=\dfrac{1}{2}CD\)

Tứ giác MBND có: \(MB//DN;MB=DN\left(cmt\right)\)

\(\Leftrightarrow MBND\) là hbh ( dấu hiệu) \(\Rightarrow DM//BN\left(t/c\right)\)
10 tháng 11 2018

Hình đâu ạ?

22 tháng 5 2015

a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC

=> MN//BC; MN=1/2BC (1).

    Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC

=> PQ//BC; PQ=1/2BC (2). 

từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.

Tứ giác MNPQ có MN//PQ; MN=1/2PQ.

vậy MNPQ là hình bình hành.

b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan. 

c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.

Giả sử GÓc N=90 độ

Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG

                                                                                     mà                          NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.

lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.

tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A

Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau

 Giả sử MP=NQ (1)

ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM

 G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)

Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN

Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)

Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.

Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay

c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.

Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.

Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi

8 tháng 9 2016

Răng chi mà dài dòng dữ rứa

29 tháng 12 2014

câu c:

-chứng minh ABPD là hình bình hành suy ra:Elà trung điểm của AP

-Suy ra QElà đường trung bình tam giác APD , do đó :QE // PD (1)

-Mà QN là đường trung binh hình thang ABCD suy ra: QN//CD (2)

-Từ (1) và (2) suy ra :Q,N,E thẳng hành (theo tiên đề ơ-cơlit)