K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

1) (a+b)^2

=(a+b)(a+b)

=a^2+ab+ab+b^2

=a^2+2a+b^2

2) (a-b)^2

=(a-b)(a-b)

=a^2-ab-ab+b^2

=a^2-2ab+b^2

3)(a-b)(a+b)

=a^2+ab-ab-b^2

=a^2-b^2

4) (a+b)^3

=(a+b)^2(a+b)

=(a^2+2ab+b^2)(a+b) ( chứng minh câu a)

=a^3+a^2b+2ab^2+2a^2b+ab^2+b^3

=a^3+3a^2b+3ab^2+b^3

5) (a-b)^3

=(a-b)^2(a-b)

=(a^2-2ab+b^2)(a-b) ( chứng minh câu b)

=a^3-a^2b+2ab^2-2a^2b+ab^2-b^3

=a^3-3a^2b+3ab^2-b^3

11 tháng 7 2016

Chứng minh đẳng thức:

1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải

2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp

3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b=vp

4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp

5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp

6) (a+b)=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp

7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b=a3-3a2b+3ab2-b3=vp

14 tháng 9 2016

1.Bình phương của 1 tổng bằng bình phương số thứ 1 cộng hai lần tích của số thứ nhất với số thứ hai cộng bình phương số thứ hai

2.Bình phương của 1 hiệu bằng bình phương số thứ 1 trừ 2 lần tích số thứ nhất với số thứ 2 cộng với bình phương số thứ 2.

3.Hiệu 2 bình phương bằng tích của tổng 2 số với hiệu 2 số.

4.Lập phương của 1 tổng bằng lập phương số thứ 1 + 3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 + lập phương số thứ 2.

5. Lập phương của 1 tổng bằng lập phương số thứ 1 -3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 - lập phương số thứ 2.

6.Tổng hai lập phương bằng tích giữa tổng 2 số với bình phương thiếu của 1 hiệu.

7.Hiệu 2 lập phương bằng tích giữa hiệu hai số với bình phương thiếu của 1 tổng.

14 tháng 9 2016

VD: (A+B)2

=> Bình phương của 1 tồng 2 biểu thức bằng bình phương biểu thức thứ nhất cộng 2 lần tích biểu thức số thứ nhất nhất và biểu thức số thứ 2 cộng bình phương số thứ 2. 

Bạn dựa vào ví dụ trên rồi làm tiếp  nha!

6 tháng 9 2017

\(3y^2\left(a-3x\right)-a\left(a-3x\right)=\left(3y^2-a\right)\left(a-3x\right)\)

30 tháng 9 2018

1.

a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)

= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)

=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]

=(a^4-1)(a^4-16)

b)(3a+1)^2 + (2-3a)(2+3a)

= 9a2 + 6a +1 + 4 - 9a2

= 6a+5

2.

Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)

30 tháng 9 2018

1.

a) (a + 1)(a + 2)(a+ 4)(a - 1)(a+ 1)(a - 2)

= [(a + 1)(a - 1)][(a + 2)(a - 2)](a+ 4)(a+ 1)

= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)

= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]

= (a4 - 1)(a4 - 16)

= a8 - 16a4 - a4 + 16

= a8 - 17a4 + 16

b) (3a + 1)2 + (2 - 3a)(2 + 3a)

= 9a2 + 6a + 1 + 22 - 9a2

= (9a2 - 9a2) + 6a + (1 + 4)

= 6a + 5

2.

a + b = 1

(a + b)3 = 13

a3 + 3a2b + 3ab2 + b3 = 1

a3 + b3 + 3ab(a + b) = 1

a3 + b3 = 1 - 3ab(a + b)

Mà a + b = 1

=> a3 + b3 = 1 - 3ab

Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab

30 tháng 9 2018

2.\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=1-3ab\)

30 tháng 9 2018

1a)\(\left(3a+1\right)^2+\left(2-3a\right)\left(2+3a\right)=9a^2+6a+1+4-9a^2\)

.......................................................\(=6a+5\)

NV
20 tháng 9 2020

\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)

\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

b/

\(\left(a+b\right)^3+\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\)

\(=2a^3+6ab^2=2a\left(a^2+3b^2\right)\)

c/

\(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=6a^2b+2b^3=2b\left(b^2+3a^2\right)\)

d/

\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-\left(3a^2b+3ab^2\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

e/

\(a^3-b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=\left(a-b\right)^3+3ab\left(a-b\right)\)

18 tháng 7 2015

ta có: (a3-3ab2)2=a6-6a4b2+9a2b4=25

(b3-3a2b)2=b6-6a2b4+9a4b2=100

=> (a3-3ab2)2-(b3-3a2b)2=a6-6a4b2+9a2b4+b6-6a2b4+9a4b2=125

<=>a6+3a4b2+3a2b4+b6=125

<=>(a2+b2)3=125

=>a2+b2=5

13 tháng 12 2016

Sửa lại (a3-3ab2)2+(b3-3a2b)2 là OK