Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gócDCB=gócEBC=góc1/2ACB=góc1/2ABC
a)xét tg DCB và tg EBC có
BC là cạnh chung
góc B=góc C
góc DCB=góc EBC
suy ra tg DCB = tg EBC(g.c.g)
suy ra CD=BE(hai cạnh tương ứng)
xét tgADC và tgAEB có
góc A là góc chung là góc vuông
AB=AC
DC=EB
suy ra tgADC = tgAEB (ch.cgv)
suy ra AD=AE(hai cạnh tương ứng)
câu b và câu c k xong đi rồi nói
a: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH
c: Xét ΔBKC có
BE vừa là đường cao, vừa là phân giác
=>ΔBKC cân tại B
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
C A B D E M N O I
Gọi O là giao điểm của CM và AD; I là giao điểm của CN và BE.
Do AD là tia phân giác góc A nên ta thấy ngay \(\Delta ACD=\Delta AMD\) (Cạnh huyền góc nhọn)
Vậy thì AC = AM; DC = DM hay AD là trung trực của CM. Vậy nên \(\widehat{COD}=90^o.\)
Từ đó ta có \(\widehat{OCD}+\widehat{CDO}=90^o\) mà \(\widehat{CAD}+\widehat{CDO}=90^o\Rightarrow\widehat{OCD}=\widehat{CAD}=\frac{\widehat{CAB}}{2}\)
Hoàn toàn tương tự \(\widehat{ACN}=\frac{\widehat{ABC}}{2}\)
Ta có \(\widehat{ABC}+\widehat{BAC}=90^o\Rightarrow2\widehat{ACN}+2\widehat{BCM}=90^o\)
\(\Rightarrow\widehat{ACN}+\widehat{BCM}=45^o\Rightarrow\widehat{MCN}=90^o-45^o=45^o.\)