K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

n=8

\(\frac{8+9}{8-6}\)\(\Leftrightarrow\)\(\frac{17}{2}\)\(\Rightarrow\)Phân số tối giản

28 tháng 5 2015

1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6 

Ta có: n + 9 chia hết cho n - 6

=> n - 6 + 15 chia hết cho n - 6

=> 15 chia hết cho n - 6.

=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}

=> n thuộc {7; 9; 11; 21}

2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản 

=> 12n + 1 và 30n + 2 có UCLN là d (d > 1) 
d là ước chung của 12n + 1 và 30n + 2

=> d là ước của 30n + 2 - 2(12n + 1) = 6n 
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1 
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm. 

31 tháng 1 2018

chứng minh 12n + 1/30n + 2

gọi a là ƯC của 12n + 1 và  30n + 2

=> 12n + 1 chia hết cho a

=> 12n chia hết cho a

     1 chia hết cho a

=> a = 1

vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau

nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)

18 tháng 6 2020

a) \(\frac{n+9}{n-6}=\frac{n-6+15}{n-6}=1+\frac{15}{n-6}\)

Để phân số có giá trị là số tự nhiên điều kiện là: 

\(n-6\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)vì n > 6 

=> \(n\in\left\{7;9;11;21\right\}\) thỏa mãn

b) Đặt:  \(\left(n+9;n-6\right)=d\) với d là số tự nhiên 

=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow15⋮d\)=> \(d\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

Với d = 3 => \(\hept{\begin{cases}n+9⋮3\\n-6⋮3\end{cases}}\Rightarrow2\left(n+9\right)-\left(n-6\right)⋮3\Rightarrow n+24⋮3\Rightarrow n⋮3\)=> Tồn tại  số tự nhiên k để n = 3k ( k>2)

Với d = 5 => \(\hept{\begin{cases}n+9⋮5\\n-6⋮5\end{cases}}\Rightarrow2\left(n+9\right)-\left(n-6\right)⋮5\Rightarrow n+4⋮5\)=> Tồn tại stn h để: n + 4 = 5 h <=> n = 5h - 4 ( h > 2)

Do đó để phân số trên là tốn giản 

<=> d = 1 =>  \(n\ne3k;n\ne5h-4\) với h; k là số tự nhiên lớn hơn 2

Vậy  \(n\ne3k;n\ne5h-4\) với h; k là số tự nhiên lớn hơn 2

8 tháng 7 2019

Để \(\frac{n+9}{n-6}\inℕ\)

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có : Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ_{\left(15\right)}\)

\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)

Lập bảng xét các trường hợp : 

\(n-6\)\(1\)\(3\)\(5\)\(15\)
\(n\)\(7\)\(9\)\(11\)\(21\)

Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)

Để \(\frac{n+9}{n-6}\)là số nguyên 

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có :\(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)

n-6-11-335-5-1515
n5739111-921
4 tháng 2 2022

hahaa

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:

a. Để phân số đã cho có giá trị nguyên thì:

$n+9\vdots n-6$

$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$

Mà $n>6$ nên $n-6>0$

$\Rightarrow n-6\in\left\{1;3;5;15\right\}$

$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$

b.

Gọi $d=ƯCLN(n+9, n-6)$

$\Rightarrow n+9\vdots d; n-6\vdots d$

$\Rightarrow (n+9)-(n-6)\vdots d$

$\Rightarrow 15\vdots d$

Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$

Điều này xảy ra khi: 

$n-6\not\vdots 3; n-6\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.

28 tháng 5 2015

tớ làm câu cuối thôi, 2 câu trên dễ rồi

Xét thừa số thứ 2 ta có:

456.789789-789.456456

=456.1001.789-789.1001.456=0

Vậy tích 1000!(456,789789-789.456456)=0

28 tháng 5 2015

Để phân số trên nguyên thì n+9 chia hết cho n-6

Mà n-6 chia hết cho n-6

=>(n+9)-(n-6) chia hết cho n-6

=>15 chia hết cho n-6

=> n-6 thuộc {-15;-5;-3;-1;1;3;5;15}

=> n thuộc ....{-9;1;3:5;7;9;11;21)