K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED} \)\( = 4\overrightarrow {EG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)

Mà: \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)

\(\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \) (do N là trung điểm của CD)

\( \Rightarrow \overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG}  + 2(\overrightarrow {GM}  + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)

b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Từ ý a ta suy ra \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Ta có: \(\overrightarrow {EA}  = 4\overrightarrow {EG}  \Leftrightarrow \overrightarrow {EA}  = 4.(\overrightarrow {EA}  + \overrightarrow {AG} ) \Leftrightarrow  - 3\overrightarrow {EA}  = 4\overrightarrow {AG} \)

\( \Leftrightarrow 3\overrightarrow {AE}  = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \)

Suy ra A, G, E thẳng hàng và \(AG  = \frac{3}{4}AE \) nên G thuộc đoạn AE.

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

Bài 3: 

Tham khảo:

image

a: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{DI}+\overrightarrow{IC}\)

\(=\overrightarrow{AI}+\overrightarrow{DI}=-\left(\overrightarrow{IA}+\overrightarrow{ID}\right)=-2\overrightarrow{IM}=2\overrightarrow{MI}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DB}-\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)(luôn đúng)

=>ĐPCM

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\cdot\overrightarrow{GM}+2\cdot\overrightarrow{GI}=\overrightarrow{0}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng

22 tháng 8 2019

Kéo dài AG lấy E sao cho AG=GE

\(2\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}=\overrightarrow{GE}+\overrightarrow{GB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{AB}\)

\(\overrightarrow{GI}=\overrightarrow{IA}\Rightarrow6\overrightarrow{GI}=3\overrightarrow{GA}\)

\(\overrightarrow{AB}+\overrightarrow{AC}+3\overrightarrow{GA}=\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}=\overrightarrow{GE}+\overrightarrow{GA}=\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{0}\)