K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

a) A B C D O M N

Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)

=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)

=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)

=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)

Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)

=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)

Từ (1), (2),(3):

=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)

=> MO=NO(dpcm)

CHÚC BẠN HỌC TỐT!

17 tháng 1 2018

mK GIẢI CÂU 1

1. Cho tứ giác ABCD gọi O là giao điểm của AC và BD, đường thẳng qua A song song với BC cắt BD tại E. Đường thẳng qua B song song với AD cắt AC tại G. a. Chứng minh EG // CD b. Giả sử AB//CD. Chứng minh AB2 =CD*EG 2. Cho tam giác ABC vuông tại A , vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD , K là giao điểm của AC và BF. a. Chứng minh rằng:...
Đọc tiếp

1. Cho tứ giác ABCD gọi O là giao điểm của AC và BD, đường thẳng qua A song song với BC cắt BD tại E. Đường thẳng qua B song song với AD cắt AC tại G.

a. Chứng minh EG // CD

b. Giả sử AB//CD. Chứng minh AB2 =CD*EG

2. Cho tam giác ABC vuông tại A , vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD , K là giao điểm của AC và BF.

a. Chứng minh rằng: AH = AK

b. AH2 = BH * CK

3. Cho tam giác ABC , trên cạnh AC , lấy điểm D, E sao cho AD=DE=EC. Trung tuyến AM cắt BD tại P, trung tuyến CN cắt BE tại Q.

a. Chứng minh Q là trung điểm của trung tuyến CN.

b. Chứng minh PQ//AC.

c. Suy ra BC = \(\frac{1}{2}\) MN, PC = \(\frac{3}{4}\)DE.

4. Cho góc nhọn xOy . Trên cạnh Ox lấy điểm D,E. Đường thẳng d qua D cắt Oy tại F, đường thẳng d' qua E và song song với d , cắt cạnh Oy tại G; đường thẳng d'' qua G và song song với EF, cắt cạnh Ox tại H. Chứng minh OE2 = OD*OH

5. Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4 cm. Gọi F là trung điểm của BC, qua F vẽ FM vuông góc AB tại M và FN vuông góc AC tại N.

a. Tìm độ dài AF.

b. Chứng minh tứ giác AMFN là HCN.

c. Gọi D là điểm đối xứng với F qua N. Chứng minh AFCD là hình thoi.

d. Đường thẳng BN cắt cạnh DC tại K. Chứng minh \(\frac{DK}{DC}=\frac{1}{3}\)

1
13 tháng 3 2020

bài 2: undefined

25 tháng 6 2017

ko bt 

ai ko pc dống mik thì kb và tk cho mik nha

10 tháng 9 2017

trả lời đc câu hỏi thì mày muốn k bn thì tao k cho còn k thì đừng có hòng con nhỏ ngu

a: \(BC=\sqrt{13^2+20^2}=\sqrt{569}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{260\sqrt{569}}{569}\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

hay \(HD\cdot HC=AH^2\)

1.Cho tam giác vuông cân ABCcos góc C= 90 độ. Từ C kẻ một tia vuông góc với trung tuyền AM cắt AB ở D. Hãy tính tỉ số ED/DA. 2. cho điểm E thuộc cạnh AC của tam giác ABC. Qua B kẻ một đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Cm AN//CM 3.Cho hình thang ABCD có BC//AD . Trên AC kéo dài lấy 1 điểm P tùy ý. Dường thẳng qua P và...
Đọc tiếp

1.Cho tam giác vuông cân ABCcos góc C= 90 độ. Từ C kẻ một tia vuông góc với trung tuyền AM cắt AB ở D. Hãy tính tỉ số ED/DA.

2. cho điểm E thuộc cạnh AC của tam giác ABC. Qua B kẻ một đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Cm AN//CM

3.Cho hình thang ABCD có BC//AD . Trên AC kéo dài lấy 1 điểm P tùy ý. Dường thẳng qua P và trung điểm của BC cắt AB tại M và đường thẳng qua P và trung điểm của AD cắt CD tại N . CMR MN//AD

4. Tứ giác ABCD có M, N lần lượt là trung điểm của các đường chéo AC và BD. Gọi G là trọng tâm Tam giác ABC, nối GC cắt MN tại O. Chứng minh OC=3OG

5. Cho hình thang ABCD ) AB//CD) với AB=a; CD=b. Gọi I là giao điểm của hai đương chéo. Đường thẳng qua I và song song AB cắt hai cạnh bên tại E và F. CMR: EF=\(\frac{2ab}{a-b}\)

6. Hình bình hành ABCD. Gọi M là một điểm trên đường chéo AC. VẼ ME vuông góc với AB và MF vuông góc với AD. CMR\(\frac{ME}{MF}\)=\(\frac{AD}{AB}\)

0
1.Hinh thang ABCD đáy lớn ;CD. Qua A vẽ đường thẳng AK // BC cắt BD tại E. Qua B vẽ đường thẳng BI // AD cắt AC tại F ( K; I thuộc CD). CMR a, EF//AB b, \(_{AB^2}\)=CD.EF 2. Cho 1 điểm M nằm tring tam giác ABC. Đương thẳng qua M và trọng yaam G của tam giác cắt BC , CA và AB theo thứ tự D,E,F. CMR \(\frac{MD}{GD}+\frac{ME}{GE}+\frac{MF}{GF}=3\) 3.Cho tam giác ABC cân tại A. Hai điểm D và E theo thứ tự thay đổi trên AB...
Đọc tiếp

1.Hinh thang ABCD đáy lớn ;CD. Qua A vẽ đường thẳng AK // BC cắt BD tại E. Qua B vẽ đường thẳng BI // AD cắt AC tại F ( K; I thuộc CD). CMR

a, EF//AB

b, \(_{AB^2}\)=CD.EF

2. Cho 1 điểm M nằm tring tam giác ABC. Đương thẳng qua M và trọng yaam G của tam giác cắt BC , CA và AB theo thứ tự D,E,F. CMR \(\frac{MD}{GD}+\frac{ME}{GE}+\frac{MF}{GF}=3\)

3.Cho tam giác ABC cân tại A. Hai điểm D và E theo thứ tự thay đổi trên AB và BC. Kẻ DF vuông góc BC. CMR: nếu EF=\(\frac{BC}{2}\)thì đường thẳng qua E và vuông góc với DE luôn đi qua I diểm cố định.

4. Cho tam giác ABC trọng tâm G , đường thẳng d qua G cắt các cạnh AB và AC tại M<N. CMR:AM.AN=AM.NC+AN.MB

5. Cho tam giác Abc vuông tại A. Giả sử đường cao AH , trung tuyến BM, và phân giác trong CN đồng quy. CMR BH=AC

6. CHo tâm giác ABC. AM, AN và CP cắt nhau tại I. TÌm I để\(\frac{AI}{IM}+\frac{BI}{IN}+\frac{CI}{IP}\) nhỏ nhất

7. Cho tứ giác ABCD. Đường thẳng A// BC tại P và đường thẳng qua B// AD cắt AC ở Q.CMr PQ//CD

0
16 tháng 1 2017

A B C D M N P Q O

Áp dụng hệ quả của định lí Ta-lét,ta có :

\(\Delta AMO\)có NC // AM\(\Rightarrow\frac{NC}{MA}=\frac{ON}{OM}\left(1\right)\)

\(\Delta MBO\)có ND // MB\(\Rightarrow\frac{ND}{MB}=\frac{ON}{OM}\left(2\right)\)

\(\Delta ADB\)có OP // AB\(\Rightarrow\frac{OP}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ACB\)có OQ // AB\(\Rightarrow\frac{OQ}{AB}=\frac{OC}{AC}\left(4\right)\)

\(\Delta ODC\)có AB // CD\(\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\left(5\right)\)

Từ (1) và (2),ta có\(\frac{NC}{MA}=\frac{ND}{MB}\Rightarrow\frac{NC}{ND}=\frac{MA}{MB}=k\Rightarrow\frac{ND}{NC}=\frac{1}{k}\)

Từ (3),(4) và (5),ta có\(\frac{OP}{AB}=\frac{OQ}{AB}\)=> OP = OQ => O là trung điểm PQ

17 tháng 1 2017

thông cảm định lí Ta-let mình chưa học tới 

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng...
Đọc tiếp

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, Bsao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM 

Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng NP, MQ cắt BC tại E và F. CM IE = IF.

Bài 3: Qua điểm M tùy ý trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng // với 2 đường chéo AC và BD, Các đường // này cắt BC, AD lần lượt ại E, F tương ứng. Đoạn thẳng EF cắt AC, BD tương ứng tại I và J.

1) CMR nếu H là TĐ của IJ thì H cũng là TĐ của EF

2) Trong trường hợp AB = 2CD hãy chỉ ra vị trí của M trên AB sao cho EJ = JI = IF

Giải giúp em :) Cảm ơn nhiều <3

0
CÁC BẠN GIÚP MÌNH VỚI 📛 MÌNH CẢM ƠN NHIỀU Ạ (NHỚ GIẢI CHI TIẾT Ạ ❤)Bài 1. Cho hình thang ABCD ( AB // CD), lấy P € AC. Qua P kẻ đường thẳng song song với AB cắt AD, BC tại M, N. Biết AM =10cm, MD = 20cm, BN = 11cm, PC = 35cm. Tính AP, NC?Bài 2. Cho ABC , M € AB, N € AC. Biết AM =3cm; BM = 2cm, AN = 7,5cm; NC = 5cma)CM: MN // BCb)Gọi I là trung điểm của BC, AI cắt MN tại K. CM: K là trung điểm của MNc)*(Dành cho hs...
Đọc tiếp

CÁC BẠN GIÚP MÌNH VỚI 📛 MÌNH CẢM ƠN NHIỀU Ạ (NHỚ GIẢI CHI TIẾT Ạ ❤)

Bài 1. Cho hình thang ABCD ( AB // CD), lấy P € AC. Qua P kẻ đường thẳng song song với AB cắt AD, BC tại M, N. Biết AM =10cm, MD = 20cm, BN = 11cm, PC = 35cm. Tính AP, NC?

Bài 2. Cho ABC , M € AB, N € AC. Biết AM =3cm; BM = 2cm, AN = 7,5cm; NC = 5cm

a)CM: MN // BC

b)Gọi I là trung điểm của BC, AI cắt MN tại K. 

CM: K là trung điểm của MN

c)*(Dành cho hs KG)Gọi O là giao điểm BN và CM.

 CMR: 3 điểm A, O, I thẳng hàng

Bài 3. Cho hình bình hành ABCD. Vẽ tia Ax cắt đường chéo BD ở I, cắt tia BC ở J và cắt tia DC ở K

a) Tỉ số ID/IB bằng những tỉ số nào?   CM: IA^2 =IJ . IK

b)CM: 1/JA + 1/KA = 1/IA

Bài 4. Cho tứ giác ABCD. Qua E trên AD kẻ đường thẳng song song với DC và cắt AC ở G. Qua G kẻ đường thẳng song song với CB và cắt AB ở H. 

a)Tỉ số GA/GC bằng những tỉ số nào?                          b)CM: HE // BD

Bài 5. Cho ABC. Trên BC lấy D sao cho . Đường thẳng qua D song song với AB cắt AC tại E, đường thẳng qua D song song với AC cắt AB tại F.

a)So sánh tỉ số   và 

b)Gọi M là trung điểm của AC. CM: EF // BM

c)*Giả sử DB/DC = k  . Tìm k để EF // BC

1
10 tháng 2 2020

Bài 5: (bị thiếu ạ)

a) So sánh tỉ số FA/AB và AE/AC