Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Áp dụng ta đc:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow P=6\)
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Xét \(a+b+c\ne0\)
\(\Rightarrow a=b=c\)
Thay vào P ta được P=6
Xét \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Thay vào P ta được P= -3
Vậy P có 2 gtri là ...........
b,ấp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\) = 1
từ \(\frac{a1-1}{100}\) = 1 suy ra :a1-1=100 =) a1=101
........................................................................
từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101
vậy a1=a2=a3=...=a100=101
Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:
a) Tam giác FEC đồng dạng với tam giác FBD
b) Tam giác AED đồng dạng với tam giác HAC
c) Tính BC, AH, AC
Bài 1:
a) Ta có: 2x + 2x+3 = 144
2x.(1+23) = 144
2x.9 = 144
2x = 16
x = 4
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right)\)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{121}\right)\)
\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{120}{121}\)
\(-A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot10\cdot12}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot11\cdot11}\)
\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot...\cdot11\right)\left(2\cdot3\cdot4\cdot...\cdot11\right)}\)
\(-A=\frac{1\cdot12}{11\cdot2}=\frac{6}{11}\)
\(A=-\frac{6}{11}\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)
\(B=1-\frac{1}{38}=\frac{37}{38}\)