Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
1. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}\)
\(=\frac{\left(5z-3x-4y\right)-34}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x-1}{2}=2\)\(\Rightarrow x-1=4\)\(\Rightarrow x=5\)
\(\frac{y+3}{4}=2\)\(\Rightarrow y+3=8\)\(\Rightarrow y=5\)
\(\frac{z-5}{6}=2\)\(\Rightarrow z-5=12\)\(\Rightarrow z=17\)
Vậy \(x=5\); \(y=5\)và \(z=17\)
2. Từ \(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=\frac{a}{21}=\frac{b}{14}\)(1)
Từ \(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
\(=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow a=21.2=42\); \(b=14.2=28\); \(z=10.2=20\)
Vậy \(a=42\); \(b=28\); \(z=20\)
1.\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\hept{\begin{cases}\frac{x}{2}.\frac{y}{3}=\frac{54}{6}=9\\\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\end{cases}\Rightarrow\left(\frac{x}{2}\right)^2}=\left(\frac{y}{3}\right)^2=9\Rightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}}\)
2.\(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Bài 1:
a) Ta có: 7x = 4y => x/4 = y/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/4 = y/7 = y - x / 7 - 4 = 24/3 = 8
x/4 = 8 => x = 8 . 4 = 32
y/7 = 8 => y = 8 . 7 = 56
Vậy x = 32 và y = 56
b) Ta có: x/5 = y/6 => x/20 = y/24 (1)
y/8 = z/7 => y/24 = z/21 (2)
Từ (1) và (2) => x/20 = y/24 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/20 = y/24 = z/21 = x + y - z / 20 + 24 - 21 = 69/23 = 3
x/20 = 3 => x = 3 . 20 = 60
y/24 = 3 => y = 3 . 24 = 72
z/21 = 3 => z = 3 . 21 = 63
Vậy x = 60; y = 72 và z = 63
c) Đặt x/3 = y/4 = k
=> x = 3k và y = 4k
Ta có: x^2 . y^2 = 144
=> (3k)^2 . (4k)^2 = 144
=> 9 . k^2 . 16 . k^2 = 144
=> 144 . k^4 = 144
=> k^4 = 144 : 144 = 1
=> k = 1 hoặc k = -1
Nếu k = 1 => x = 1 . 3 = 3; y = 1 . 4 = 4
Nếu k = -1 => x = -1 . 3 = -3; y = -1 . 4 = -4
Vậy x = {-3; 3} và y = {-4; 4}
b m n a O
* Vẽ hình hơi xấu chút
Vì Om vuông góc với Oa nên \(\widehat{mOb}\) = 900
Vì On vuông góc với Ob nên \(\widehat{bOn}\) = 900
Vì tia Om nằm giữa 2 tia Oa và Ob nên:
\(\widehat{aOm}+\widehat{mOb}=\widehat{aOb}\)
Hay 900 + \(\widehat{mOb}\) = 1200
=> \(\widehat{mOb}\) = 1200 - 900
=> \(\widehat{mOb}\) = 300
Vì tia On nằm giữa 2 tia Oa và Ob nên:
\(\widehat{bOn}+\widehat{nOa}=\widehat{aOb}\)
Hay 900 + \(\widehat{nOa}\) = 1200
=> \(\widehat{nOa}\) = 1200 - 900
=> \(\widehat{nOa}\) = 300
=> \(\widehat{nOa}=\widehat{mOb}\) (= 300)
Vậy \(\widehat{nOa}=\widehat{mOb}\)
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16