Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Ta có: |2x - 5| \(\ge\)0 \(\forall\)x
=> |2x - 5| + 1,(3) \(\ge\)1,(3)
hay |2x - 5| + 4/3 \(\ge\)4/3
Dấu "=" xảy ra <=> 2x - 5 = 0 <=> x = 5/2
Vậy Min F = 4/3 <=> x = 5/2
Ta có: G = |x - 3| + |x + 3/2|
G = |3 - x| + |x + 3/2| \(\ge\)|3 - x + x + 3/2| = |3/2| = 3/2
Dấu "=" xảy ra <=> (3 - x)(x + 3/2) \(\ge\)0
<=> -3/2 \(\le\)x \(\le\)3
Vậy MinG = 3/2 <=> -3/2 \(\le\)x \(\le\)3
Làm lại cho Edogawa Conan
\(G=\left|x-3\right|+\left|x+\frac{3}{2}\right|\)
\(G=\left|3-x\right|+\left|x+\frac{3}{2}\right|\ge\left|\left(3-x\right)+\left(x+\frac{3}{2}\right)\right|\)
\(=\frac{9}{2}\)
Vậy \(G_{min}=\frac{9}{2}\Leftrightarrow\left(3-x\right)\left(x+\frac{3}{2}\right)\ge0\)
\(Th1:\hept{\begin{cases}3-x\ge0\\x+\frac{3}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge\frac{3}{2}\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le2\)
\(Th2:\hept{\begin{cases}3-x\le0\\x+\frac{3}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\left(L\right)\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
Bài 1:
\(A=\left|3x-2\right|+\left|5-3x\right|\ge\left|3x-2+5-3x\right|=3\)
\(\Rightarrow A_{min}=3\) khi \(\frac{2}{3}\le x\le\frac{5}{3}\)
Bài 2:
Đặt \(t=\frac{2x+1}{x-3}\Rightarrow t\left(x-3\right)=2x+1\Rightarrow tx-3t=2x+1\)
\(\Rightarrow x\left(t-2\right)=3t+1\Rightarrow x=\frac{3t+1}{t-2}\) (\(t\ne2\))
Thay vào bài toán ta được:
\(f\left(t\right)=\frac{\frac{3t+1}{t-2}+2}{\frac{3t+1}{t-2}-2}=\frac{3t+1+2\left(t-2\right)}{3t+1-2\left(t-2\right)}=\frac{5t-3}{t+5}\)
Vậy \(f\left(x\right)=\frac{5x-3}{x+5}\)