K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

11 tháng 4 2021

a, Ta có :  \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay 

\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x\)

b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0 

Đặt \(k\left(x\right)=7x^2-35x+42=0\)

\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2

10 tháng 4 2021

xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là 

\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)

bị sai mỗi thế thôi ạ mọi người giúp em với ạ

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

4 tháng 3 2016

Bài 1 có nhiều giá trị mà?

4 tháng 3 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{\left|x-3\right|-\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{0}\)

Do đó không tồn tại x thỏa mãn.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

Bài 1 Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)Bài 2Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)CMR \(\frac{A}{B}\)là 1 số nguyênBài 3a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307b) Cho đa thức...
Đọc tiếp

Bài 1 

Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)

Bài 2

Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)

CMR \(\frac{A}{B}\)là 1 số nguyên

Bài 3

a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307

b) Cho đa thức f(x)=\(a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)

Biết rằng : f(x)=f(-1);f(2)=f(-2)

Chứng minh : f(x)=f(-x) với mọi x

Cho 4 số không âm a, b, c, d thỏa mãn a+b+c+d=1. Gọi S là tổng các giá trị tuyệt đối của hiệu từng cặp số có được từ 4 số này. S có thể đạt được giá trị lớn nhất bằng bao nhiêu?

Bài 4 

Cho tam giác ABC (ab>ac), m là trung điểm của bc. Đường thẳng đi qua m vuông góc với tia phân giác của góc a tại h cắt cạnh ab, ac lần lượt tại e và f. Chứng minh

a) 2BME=ACB-B( Đây là các góc)

b) \(\frac{FE^2}{4}+AH^2=AE^2\)

c) BE=CF

1
5 tháng 2 2020

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{121}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{120}{121}\)

\(-A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot10\cdot12}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot11\cdot11}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot...\cdot11\right)\left(2\cdot3\cdot4\cdot...\cdot11\right)}\)

\(-A=\frac{1\cdot12}{11\cdot2}=\frac{6}{11}\)

\(A=-\frac{6}{11}\)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)

\(B=1-\frac{1}{38}=\frac{37}{38}\)