K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

thì cũng là :
(x+3)^2
(x-5y)^2
(3x-2y)^2
mình chưa hiểu lắm

26 tháng 8 2018

\(\left(x+3\right)^2=x^2+6x+9\)

\(\left(x-5y\right)^2=x^2-10xy+25y^2\)

\(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)

19 tháng 9 2018

1 ) 3yx - 6xy2 

= 3xy ( 1 - 2y )

2 ) 5ab2 - 20a3b2

= 5ab2 ( 1 - 4a2 )

= 5ab2 ( 1 - 2a ) ( 1 + 2a )

3 ) 3x - 3b - y ( b - x )

= 3 ( x - b ) + y ( x - b )

= ( x - b ) ( 3 + y ) 

19 tháng 9 2018

1)3xy-6xy2=3xy(1-2y)

2)5ab2-20a3b2=5ab2(1-4a2)=5ab2[12-(2a)2]=5ab2(1+2a)(1-2a)

3)3x-3b-y(b-x)=3x-3b-by+xy=(3x+xy)-(3b+by)=3x(1+y)-3b(1+y)=3(1+y)(x-b)

Các bạn ơi giải giúp mk 2 bài này nha! Làm theo hằng đẳng thức nhé! giải chi tiết hộ mình với nhé! Dấu "^" là mũ , dấu "-" là dấu trừ , dấu "." là dấu nhân , còn các số và chữ mình viết liền nhau là nó nhân vs nhau nha! Bài 1: Rút gọn biểu thức A = ( 2-a ) . ( 4+2a+a^2) B = ( 2.( x- 2y) . ( x+2y) + ( x-2y)^2 + ( x+2y)^2 ( x trừ 2 nhân y tất cả mũ 2 cộng với x cộng 2 nhân y tất cả mũ 2 nha , mình viết...
Đọc tiếp

Các bạn ơi giải giúp mk 2 bài này nha! Làm theo hằng đẳng thức nhé! giải chi tiết hộ mình với nhé! Dấu "^" là mũ , dấu "-" là dấu trừ , dấu "." là dấu nhân , còn các số và chữ mình viết liền nhau là nó nhân vs nhau nha!

Bài 1: Rút gọn biểu thức

A = ( 2-a ) . ( 4+2a+a^2)

B = ( 2.( x- 2y) . ( x+2y) + ( x-2y)^2 + ( x+2y)^2 ( x trừ 2 nhân y tất cả mũ 2 cộng với x cộng 2 nhân y tất cả mũ 2 nha , mình viết gần như thế các bạn cũng hiểu ha!)

C = ( a-b-c )^2 - ( a-b+c )^2

D = ( 25a^2 + 10ab + 4b^2) . ( 5a -2b)

Bài 2 : Chứng minh rằng

a) a^2 + b^2 = ( a+b)^2 - 2ab ( a cộng b tất cả mũ 2 trừ 2 nhân ab , ab viết gần là nhân vs nhau nha)

b) a^4 + b^4 = ( a^2 + b^2)^2 - 2a^2b^2 (2 nhân a mũ 2 nhân b mũ 2 nha, viết hơi gần) còn cái ( a^2+b^2)^2 là a mũ 2 cộng b mũ 2 tất cả mũ 2 nha

c) a^6 + b^6 = ( a^2 + b^2 ). [ ( a^2 + b^2)^2 - 3a^2b^2] ( 3 nhân a mũ 2 nhân b mũ 2 nha ) còn cái ( a^2+b^2)^2 là a mũ 2 cộng b mũ 2 tất cả mũ 2 nha)

1
20 tháng 7 2019

cảm ơn ạ

29 tháng 8 2019

= 4a^2+4b^2+c^2+8ab-4bc-4ac+4b^2+4c^2+a^2+8bc-4ac-4ab+4c^2+4a^2+b^2+8ac-4ab-4bc

= 7 ( a^2+b^2+c^2 ) = 7 .10 = 70

hok toots

19 tháng 8 2019

Lời giải :

1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

19 tháng 8 2019

Lời giải :

2. \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy...

19 tháng 8 2019

1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)

\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

2) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(A=8\)

Vậy: biểu thức không phụ thuộc vào biến

19 tháng 8 2019

1) \(\left(x+5\right)^3-x^3-125\)

\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)

\(=15x^2+75x\)

2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)

\(\Leftrightarrow24x+10=0\)

\(\Leftrightarrow24x=0-10\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)

\(\Rightarrow x=-\frac{5}{12}\)

3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)

\(=0\)

Vậy: biểu thức không phụ thuộc vào biến