K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

a) 3x(x+7)^2  -  11x^2 (x+7)

= (x+7) [3x(x+7) -11x^2]

= (x+7) (3x^2  -11x^2 +21x)

= (x+7) [(3x-11x)(3x+11x) + 21x]

= (x+7) [(-8)x * 14x + 21x]

= (x+7) (-112x^2 + 21x)

= (x+7) * (21-112)x

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:

a.

\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)

\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)

\(=-a^4b^4(3a+4b)^2\)

b.

$x^3-6x^2y+12xy^2-8x^3$

$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$

c.

$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$

$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$

$=(x+\frac{1}{2})^3$

a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\cdot\left(4b+3a\right)^2\)

b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)

\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(x-2y\right)^3\)

c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)

\(=\left(x+\dfrac{1}{2}\right)^3\)

20 tháng 8 2016

2/ (b- 4b+ 4) - 9a= (b- 2) - 9a= (b- 2 + 3a)(b- 2 - 3a)

20 tháng 8 2016

3/ (x+1)(x+ x + 1)[x + (√13 - 7)/6][3x - (√13 + 7)/2]

a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)

=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)

=\(\left(3x-4\right).\left(x+14\right)\)

17 tháng 10 2016

bố éo biết

9 tháng 9 2019

a) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)

\(=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)\)

\(=\left(9x+1\right)\left(3x-3\right)\)

\(=3\left(9x+1\right)\left(x-1\right)\)

b) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)

\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)

\(=\left(6x+9+2x+2\right)\left(6x+9-2x-2\right)\)

\(=\left(8x+11\right)\left(4x+7\right)\)

c) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)

\(=-\left[\left(b+c\right)^2-a^2\right]\left(b^2-2bc+c^2-a^2\right)\)

\(=-\left(b+c-a\right)\left(b+c+a\right)\left[\left(b-c\right)^2-a^2\right]\)

\(=-\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)

9 tháng 9 2019

d) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)

\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-3^2\right]\)

\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b-3\right)\left(a-b+3\right)\)