Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):
$m(2-my)-2y=1$
$\Leftrightarrow 2m-y(m^2+2)=1$
$\Leftrightarrow y=\frac{2m-1}{m^2+2}$
$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$
Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$
Để $x<0; y>0$
$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$
$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)
$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$ (vô lý)
Do đó không tồn tại $m$ thỏa mãn đề.
Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)
\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m
Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)
Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)
Do \(m^2+2>0;\forall m\) nên (1) tương đương:
\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)
ĐK: \(m\ne0\)
a, Thay m = 2 (TM) vào hệ PT ta có:
\(\left\{{}\begin{matrix}x+2y=1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\2x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=1\\2x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy hệ PT có nghiệm (x ; y) là \(\left(\dfrac{1}{3};\dfrac{1}{3}\right)\)
b, \(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\left(1\right)\\mx+y=1\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2) ta có: \(m\left(1-my\right)+y=1\)\(\Leftrightarrow m-m^2y+y=1\Leftrightarrow y\left(1-m^2\right)=1-m\left(3\right)\)
Để hệ PT có nghiệm duy nhất \(\Leftrightarrow\)PT (3) có nghiệm \(\Leftrightarrow1-m^2\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Với \(m\ne\pm1\) thì hệ PT có nghiệm duy nhất
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1-m}{1-m^2}=\dfrac{1-m}{\left(1-m\right)\left(1+m\right)}=\dfrac{1}{1+m}\\x=\dfrac{1}{1+m}\end{matrix}\right.\)
Để x, y > 0 \(\Leftrightarrow\dfrac{1}{1+m}>0\)mà 1 > 0 nên \(1+m>0\Leftrightarrow m>-1\)kết hợp với điều kiện ta có: \(m>-1,m\ne1\)
Mình làm câu b thôi nhé
b) Ta có: x + my = 1
=> x = 1 - my
Lại có: mx + y = 1
=> y = 1 - mx = 1 - m(1 - my) = 1 - m + m2y
=> y - m2y = 1 - m
=> y(1 - m2) = 1 - m
=> y = \(\dfrac{1-m}{1-m^2}=\dfrac{1}{1+m}\)
=> x = 1 - \(\dfrac{m}{1+m}\) = \(\dfrac{1}{1+m}\)
=> Để x, y > 0 thì m + 1 > 0
=> m > -1
Bài 1:
Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)
Bài 2 :
Để hpt đã cho có vô số nghiệm thì m = 1
Lời giải:
Khi \(m=-\sqrt{2}\). HPT tương đương:
\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)
Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)
\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)
b)
\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)
\(\Rightarrow mx+[(m+1)x-3]=m\)
\(\Leftrightarrow x(2m+1)=m+3\)
Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.
Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)
Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)
\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)
Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)
Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)
\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)
Vậy đk là \(m> \frac{-1}{2}\)
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-y=2\\ x-4y=-1\end{matrix}\right.\Rightarrow (x-y)-(x-4y)=2-(-1)\)
\(\Leftrightarrow 3y=3\Rightarrow y=1\)
\(\Rightarrow x=2+y=3\)
Vậy HPT có nghiệm $(x,y)=(3,1)$
b)
\(\left\{\begin{matrix} x-my=2\\ mx-4y=m-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=my+2\\ mx-4y=m-2\end{matrix}\right.\)
\(\Rightarrow m(my+2)-4y=m-2\)
\(\Leftrightarrow y(m^2-4)=-(m+2)(*)\)
Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thfi $(*)$ cũng phải có nghiệm $y$ duy nhất. Điều này xảy ra khi mà \(m^2-4\neq 0\Leftrightarrow (m-2)(m+2)\neq 0\Leftrightarrow m\ne \pm 2\)
Khi đó: \(y=\frac{-(m+2)}{m^2-4}=\frac{1}{2-m}\)
Để \(y>0\Leftrightarrow \frac{1}{2-m}>0\Leftrightarrow 2-m>0\Leftrightarrow m< 2\)
Vậy $m< 2$ và $m\neq -2$
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-y=2\\ x-4y=-1\end{matrix}\right.\Rightarrow (x-y)-(x-4y)=2-(-1)\)
\(\Leftrightarrow 3y=3\Rightarrow y=1\)
\(\Rightarrow x=2+y=3\)
Vậy HPT có nghiệm $(x,y)=(3,1)$
b)
\(\left\{\begin{matrix} x-my=2\\ mx-4y=m-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=my+2\\ mx-4y=m-2\end{matrix}\right.\)
\(\Rightarrow m(my+2)-4y=m-2\)
\(\Leftrightarrow y(m^2-4)=-(m+2)(*)\)
Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thfi $(*)$ cũng phải có nghiệm $y$ duy nhất. Điều này xảy ra khi mà \(m^2-4\neq 0\Leftrightarrow (m-2)(m+2)\neq 0\Leftrightarrow m\ne \pm 2\)
Khi đó: \(y=\frac{-(m+2)}{m^2-4}=\frac{1}{2-m}\)
Để \(y>0\Leftrightarrow \frac{1}{2-m}>0\Leftrightarrow 2-m>0\Leftrightarrow m< 2\)
Vậy $m< 2$ và $m\neq -2$