Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xet 2 tam giac ADE va CBF ta co:
\(\widehat{A}=\widehat{C}\)(2 goc doi cua hinh binh hanh)
\(AE=CF\)
\(AD=BC\)(2 canh doi cua hinh binh hanh)
Do do:\(\Delta ADE=\Delta CBF\left(c-g-c\right)\)
Suy ra:\(DE=BF\)(2 canh tuong ung)
b.Xet 2 tam giac ADF va CBE ta co:
\(\widehat{D}=\widehat{B}\)(2 goc doi cua hinh binh hanh)
\(DF=BE\)
\(AD=CB\)(2 canh doi cua hinh binh hanh)
Do do:\(\Delta ADF=\Delta CBE\left(c-g-c\right)\)
Suy ra:\(AF=CE\)(2 canh tuong ung)
Tu giac AECF co:
\(AE=CF\)
\(AF=CE\)
Nen AECF la hinh binh hanh
Suy ra:\(\widehat{BAF}=\widehat{DCE}\)(2 goc doi cua hinh binh hanh)
Theo chung minh o cau a ta co:\(\Delta ADE=\Delta CBF\)
Suy ra:\(\widehat{AED}=\widehat{CFB}\)(2 goc tuong ung)
Xet 2 tam giac EAM va FCN ta co:
\(AE=CF\)
\(\widehat{BAF}=\widehat{DCE}\)
\(\widehat{AED}=\widehat{CFB}\)
Do do:\(\Delta EAM=\Delta FCN\left(g-c-g\right)\)
Suy ra:\(EM=FN\left(1\right)\)(2 canh tuong ung)
Va \(\widehat{AME}=\widehat{CNF}\)(2 goc tuong ung)
Ma \(\widehat{DMF}=\widehat{AME}\left(2\right)\)
\(\widehat{BNE}=\widehat{CNF}\left(3\right)\)
Tu (2) va (3) suy ra:\(\widehat{DMF}=\widehat{BNE}\)
Tu giac EBFD co:
\(BE=DF\)
\(DE=BF\)(chung minh o cau a)
Nen EBFD la hinh binh hanh
Suy ra;\(\widehat{EDF}=\widehat{FBE}\)(2 goc doi cua hinh binh hanh)
Xet 2 tam giac DMF va BNE ta co:
\(\widehat{DMF}=\widehat{BNE}\)
\(\widehat{EDF}=\widehat{FBE}\)
\(DF=BE\)
Do do:\(\Delta DMF=\Delta BNE\left(c-g-c\right)\)
Suy ra;\(MF=NE\left(4\right)\)(2 canh tuong ung)
Tu (1) va (4) suy ra:EMFN la hinh binh hanh
a) Xét Tứ giác DEBF ta có:
EB // DF ( vì AB // CD )
EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa lại câu từ cho hay]
\(\Rightarrow\)tứ giác DEBF là hbh
a, Ta có:ABCD la hình bình hành=>AB=CD;AB//CD
mà E là trung diểm của AB;Flà trung điểm của CD
=>AE=EB=CF=DF(1)
VÌ AB//CD=>EB//DF(2)
Từ(1) và (2)=> EBFD là hình bình hành( theo dấu hiệu nhận biết hình bình hành)(đpcm)
b, Xét hbh ABCD có
AC cắt BD tại trung diểm củaAC và BD(1)
Xét hbh EBFD có EF cắt BD tại trung điểm của EF và BD(2)
từ (1) và (2)=>ba dường thang AC,BD,EF đồng quy
c,GỌI GIAO DIỂM CỦA AC,BD,EF LÀ O
Xét tam giác EOM và tam giác NOF có
góc EOM=góc NOF( đói đỉnh)
OE=OF(vi O là trung điểm cua EF)
goc MEF=góc NFE(vì CE//BF)
=>TAM GIAC EOM=TAMGIAC NOF
=.ME=NF(1)
TA CÓ ME//FN(2)
TU (1) VA(2)=>ENFM LA HBH
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O