Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mong các bạn giúp mình, trong lúc hỏi mình sẽ luôn suy nghĩ chứ ko hoàn toàn dựa vào các bạn đâu, nếu bời ạn nào ra đáp án vui lòng ghi cả lời giải giúp mình
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
Bài 2:
a=5k+2
b=5c+3
\(ab=\left(5k+2\right)\left(5c+3\right)\)
\(=25kc+15k+10c+6\)
\(=5\left(5kc+3k+2c+1\right)+1\) chia 5 dư 1(đpcm)
Lời giải:
Đặt \(f(x)=x^2+mx+2\)
Theo định lý Bê-du về phép chia đa thức thì đa thức dư khi chia $f(x)$ cho $x-1$ và $x+1$ lần lượt là $f(1)$ và $f(-1)$
\(\Rightarrow \left\{\begin{matrix} R_1=f(1)=1+m+2=m+3\\ R_2=f(-1)=1-m+2=3-m\end{matrix}\right.\)
Vì $R_1=R_2$
\(\Leftrightarrow m+3=3-m\Rightarrow m=0\)
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)