K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

\(B=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}+2^{11}\)

\(\Rightarrow B=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+\left(2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}\right)\)

\(\Rightarrow B=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+2^6\left(1+2+2^2\right)+2^9\left(1+2+2^2\right)\)

\(\Rightarrow B=7+2^3.7+2^6.7+2^9.7\)

\(\Rightarrow B=7\left(1+2^3+2^6+2^9\right)⋮7\)

Vậy \(B⋮7\)

12 tháng 12 2017

cảm ơn bạn nhiều lắm nha!!!!

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

26 tháng 11 2015

ta đảo  ngược A lại ta có 1+112+113+...+119

2A=112+113+114+....+119+1110

lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5

 

10 tháng 10 2017

Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi  nhóm có 3 số liên tiếp nhau.

Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)

\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)

\(=2+2.7+2^5.7+.....+2^{98}.7\)

\(\Rightarrow\)Tổng này chia 7 dư 2

10 tháng 10 2017

bài 1

 abcabc=abc.1001

có 1001chia hết cho 7 

=>abc.1001 chia hết cho 7

còn chia hết cho 11 và 13 thì tương tự

bài 2

A=(2100+299+298)+...+(24+23+22)+21

A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21

A=298.(22+21+1)+...+22.(22+21+1)+21

A=298.7+...+22.7+21

A=(298+22).7 +21

có 7 chia hết co 7

=>(298+22).7 chia hết cho 7

=>Achia 7 dư 21