K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)\(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\) 

         B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)\(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)

       vì  \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)

vậy 8A>8B nên A>B

\(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)

\(8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

\(\text{Vì }\frac{7}{8^{19}+1}>\frac{7}{8^{24}+1}\)

\(\Rightarrow8A>8B\)

\(\Rightarrow A>B\)

\(\text{Câu B làm tương tự nhé}\)

E=1-2-3+4+5-6-7+8+...+21-22-23+24

=0+0+...+0

=0.12

=0

22 tháng 7 2016

E = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 21 - 22 - 23 + 24 (có 24 số; 24 chia hết cho 4)

E = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (21 - 22 - 23 + 24)

E = 0 + 0 + ... + 0

E = 0

4 tháng 11 2018

1. 

a)=1/3-[(-5/4)-5/8]

=1/3-(-15/8)=53/24

b)=5/9:(-3/22)+5/9:(-3/5)

=5/9*22/-3+5/9*5/-3=-110/27+-25/27=5

2

a)Ta có 339<340=920<1120<1121

 nên 339<1121

b)Ta có /3,4-x/ lớn hơn hoặc bằng 0 Với mọi x thuộc R

          => -/3,4-x/ bé hơn hoặc bằng 0 Với mọi x thuộc R

           => 0,5-/3,4-x/ bé hơn hoặc bằng 0,5 Với mọi x thuộc R

  Dấu = xảy ra khi 3,4-x=0

                        =>x=3,4

 Vậy GTLN của A = 0,5 khi x=3,4

13 tháng 9 2019

a) \(\sqrt{3}+5=\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)

b) \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

c) \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

d) \(\sqrt{48}+\sqrt{120}< \sqrt{49}+\sqrt{121}=7+11=18\)