Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(A=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2001}+\frac{1}{2002}=B\)
=> A/B = 1
\(\frac{2003\times4+1998+2001\times2002}{2002+2002\times1002+2002\times1003}\)
\(=\frac{2003\times4+2\times999+2001\times2\times1001}{2002.\left(1+1002+1003\right)}\)
\(=\frac{2\times\left(2003\times2+999+2001\times1001\right)}{1001\times2\times\left(1+1002+1003\right)}\)
\(=\frac{2003\times2+999+2001\times1001}{1001\times\left(1+1002+1003\right)}\)
\(=1\)
mk ko bít
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)-2\times\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(A=\frac{1}{1002}+\frac{1}{1003}+...\frac{1}{2002}\)= B
=> A/ B = 1
A đâu bạn ơi
a mình làm rồi