K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Bài 1:

Để ĐTHS \(y=\frac{ax+2}{x-b}\) có tiệm cận ngang \(y=2\) thì cần \(a=2\)

Khi đó \(y=\frac{2x+2}{x-b}\) \(\)

Vì ĐTHS đi qua điểm \(M(2,2)\Rightarrow 2=\frac{4+2}{2-b}\Rightarrow b=-1\)

Ta có \(y=\frac{2x+2}{x+1}=2\) (thỏa mãn đkđb)

Vậy \(a=2,b=-1\)

Bài 2:

Dựa vào định nghĩa , nếu \(\lim_{x\rightarrow \infty}y=t\) thì \(y=t\) là tiệm cận ngang của ĐTHS ($x$ tiến đến âm, dương vô cùng)

Như vậy:

Nếu \(m>0\) thì hàm số xác định với mọi \(x\in\mathbb{R}\), khi đó \(\frac{1}{\sqrt{m}}\) chính là TCN của ĐTHS

Nếu \(m=0\Rightarrow y=x+1\) là hàm đa thức hiển nhiên không có TCN

Nếu \(m<0\) thì hàm số xác định chỉ trong một khoảng nào đó của $x$, khi đó ĐTHS hiển nhiên không có TCN.

Vậy \(m\leq 0\)

NV
7 tháng 8 2021

Với \(m=0\) ko thỏa mãn

Với \(m\ne0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)

23 tháng 5 2017

b) Tiệm cận đứng là đường thẳng \(x=3\)

Tiệm cận ngang là đường thẳng \(y=1\)

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

29 tháng 4 2016

Vì tam giác IAB cân tại I nên tiếp tuyến phải song song với một trong 2 đường thẳng có phương trình \(y=x;y=-x\).

 Ta có \(y'=\frac{1}{\left(x+2\right)^2}>0;x\ne-2\)

Mọi \(M\left(x_0;y_0\right)\) là tiếp điểm thì \(y'\left(x_0\right)=1\Leftrightarrow1=\frac{1}{\left(x_0+2\right)^2}\Leftrightarrow\left[\begin{array}{nghiempt}x_0=-1\\x_0=-3\end{array}\right.\)

Từ đó suy ra 2 tiếp tuyến là \(y=x+1;y=x+5\)

NV
7 tháng 8 2021

\(\lim\limits_{x\rightarrow\infty}\dfrac{mx+n}{x-1}=m\Rightarrow y=m\) là tiệm cận ngang

Mà tiệm cận ngang đi qua A \(\Rightarrow m=2\)

\(\Rightarrow y=\dfrac{2x+n}{x-1}\)

Khi đó thay tọa độ I ta được: \(1=\dfrac{2.2+n}{2-1}\Rightarrow n=-3\)

\(\Rightarrow m+n=-1\)

26 tháng 8 2017

Sao lại là tiệm cận đứng ta. M nghĩ là tiệm cận ngang chứ????

22 tháng 6 2018

30 tháng 11 2017

Chọn A

Để hàm số có đường tiệm cận ngang thì x = 1 không là nghiệm của tử thức

=> m + n ≠ 0

Khi đó tiệm cận ngang của đồ thị hàm số là y = m.

Do tiệm cận ngang của (C) đi qua A( - 1; 2) nên m = 2 .

Mặt khác đồ thị hàm số đi qua điểm I(2; 1) nên có:

Vậy m + n = 2 + (-3) = -1.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Câu 1:

Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)

Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)

\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)

Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)

\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)

Do đó không tồn tại m thỏa mãn.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Câu 2:

Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:

TH1: PT \(x^2-3x-m=0\) có nghiệm kép

\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)

\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)

TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)

\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)

Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)

Vậy tổng giá trị của $m$ thỏa mãn là:

\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)

6 tháng 10 2019

Chọn C.

Với  đồ thị hàm số y =  a x + 1 b x - 2  nhận đường thẳng x = 2 b  làm tiệm cận đứng

Theo đề bài: x = 2 là tiệm cận đứng của đồ thị nên 

Với b ≠ 0 đồ thị hàm số y =  a x + 1 b x - 2  nhận đường thẳng y =  a b  làm tiệm cận ngang.

Theo đề bài: y = 3 là tiệm cận ngang của đò thị hàm số nên 

Vậy a + b = 4.