Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}\)
\(B=\frac{1}{2004}\)
Đặt B = 2004+2003/2+2002/3+...+1/2004 B có 2004 phân số tách số 2004 = 1+1+1+...+1(2004 số 1) ghép 2004 số 1 vào từng nhóm như sau: B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1 B = 2005/2+2005/3+......+2005/2004+2005/2005 B = 2005x(1/2+1/3+....+1/2004+1/2005) Vậy A = 2005
Đặt B = 2004+2003/2+2002/3+...+1/2004
B có 2004 phân số
tách số 2004 = 1+1+1+...+1(2004 số 1)
ghép 2004 số 1 vào từng nhóm như sau:
B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1
B = 2005/2+2005/3+......+2005/2004+2005/2005
B = 2005x(1/2+1/3+....+1/2004+1/2005)
Vậy A = 2005
(1-1/2)x(1-1/3)x(1-1/4)x(1-1/5)x.......x (1-1/2003)x(1-1/2004)
=1/2 x 2/3 x 3/4 x 4/5 x.....x2002/2003 x 2003/2004
=\(\frac{1\times2\times3\times4\times...\times2002\times2003}{2\times3\times4\times5....\times2003\times2004}\)
=\(\frac{1}{2004}\)
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x...x\left(1-\frac{1}{2003}\right)x\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2002}{2003}x\frac{2003}{2004}\)
\(=\frac{1x2x3x4x....x2002x2003}{2x3x4x5x...x2003x2004}\)
\(=\frac{1}{2004}\)
Đề bài
= \(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2002}{2003}\times\frac{2003}{2004}\)
= \(1\times2\times3\times4\times...\times2002\times2003/2\times3\times4\times5\times...2003\times2004\)
= \(\frac{1}{2004}\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot....\cdot\left(1-\frac{1}{2003}\right)\cdot\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot....\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot....\cdot2002\cdot2003}{2\cdot3\cdot4\cdot5\cdot....\cdot2003\cdot2004}\)
\(=\frac{1}{2004}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2004}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2003}{2004}\)
\(B=\dfrac{1\cdot2\cdot3\cdot...\cdot2003}{2\cdot3\cdot4\cdot...\cdot2004}\)
\(B=\dfrac{1}{2004}\)
B=(1-1/2)x(1-1/3)x(1-1/4)x(1-1/5)...(1-1/2003)x(1-1/2004)
B=1/2x2/3x3/4x4/5x...x2002/2003x2003/2004
B=1/2004
\(B=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times...\times\left(1-\frac{1}{2004}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times...\times\left(\frac{2003}{2003}-\frac{1}{2003}\right)\times\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times...\times\frac{2002}{2003}\times\frac{2003}{2004}\)
\(=\frac{1\times2\times...\times2002\times2003}{2\times3\times...\times2003\times2004}\)
\(=\frac{1}{2004}\)
=> B = 1/2 * 2/3 * 3/4 * 4/5 *...* 2002/2003 * 2003/2004 = 1/2004