Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(13\dfrac{1}{4}-1\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(=\dfrac{1\dfrac{25}{108}.230\dfrac{1}{25}+46\dfrac{3}{4}}{4\dfrac{16}{21}:\left(-1\dfrac{20}{21}\right)}=\dfrac{330\dfrac{1}{25}}{-2\dfrac{18}{41}}=-135,3164\)
Bài 2:
1: =>5x+1=6/7 hoặc 5x+1=-6/7
=>5x=-1/7 hoặc 5x=-13/7
=>x=-1/35 hoặc x=-13/35
2: =>x-1=4
=>x=5
3: =>3x-1=3
=>3x=4
=>x=4/3
4: \(\Leftrightarrow\dfrac{5}{x+3}=\dfrac{-5}{6}+\dfrac{1}{2}=\dfrac{-5+3}{6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
=>x+3=-15
=>x=-18
7: \(\Leftrightarrow2^{2x+1}+2^{2x+6}=264\)
=>2^2x+1*(1+2^5)=264
=>2^2x+1=8
=>2x+1=3
=>x=1
9: =>x^4=8x
=>x^4-8x=0
=>x=2
a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)
= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)
= 0 + \(\dfrac{11}{125}\)
= \(\dfrac{11}{125}\)
b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +
\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4
= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4
= -1
c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)
= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)
= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)
= \(\dfrac{-7}{75}\)
d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)
= 1 + (-1)
= 0
Bài 7:
x/1=z/2 nên x/6=z/12
=>x/6=y/9=z/12
=>x/2=y/3=z/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
=>x=6; y=9; z=12
\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)
\(=\dfrac{2}{7}-\dfrac{-220}{567}\)
\(=\dfrac{382}{567}\)
các phần con lại dễ nên bn tự lm đi nhé mk bn lắm
Chúc bạn học tốt!
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
~ Học tốt ~
Bài 1:
1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)
\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)
\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)
\(=3^2=9\)
2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)
\(=2^7:2^3:\dfrac{1}{2^4}\)
\(=2^4.2^4=256\)
3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)
\(=\dfrac{43}{48}\)
4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)
\(=-3-1+\dfrac{1}{8}\)
\(=-4+\dfrac{1}{8}\\ \)
\(=-\dfrac{31}{8}\)
5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)
Chúc bạn học tốt
Bài 1:
c) \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.4^4.5^4}{5^{10}.4^5}=\dfrac{5^8.4^4}{5^8.5^2.4^4.4}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
Bài 2: a) \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\\\left(y+0,4\right)^{100}\ge0\forall y\\\left(z-3\right)^{678}\ge0\forall z\end{matrix}\right.\) \(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy ...
Bài 3: \(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256.\)
Vậy \(M=256.\)
Mấy bài kia dễ tự làm.
\(3)\)
\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256\)\(4)\)
\(2^{24}=\left(2^6\right)^4=64^4;3^{16}=\left(3^4\right)^4=81^4\)
\(\Leftrightarrow2^{24}< 3^{16}\)
\(B=\left(1,6\cdot0,4\right)^2-\dfrac{57}{4}+\dfrac{7}{5}-\dfrac{7}{4}=\dfrac{256}{625}-16+\dfrac{7}{5}=-\dfrac{8869}{625}\)