K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\dfrac{1991}{1990}\cdot\dfrac{1992}{1991}\cdot\dfrac{1993}{1992}\cdot\dfrac{1994}{1993}\cdot\dfrac{995}{997}\)

\(=\dfrac{1991}{1991}\cdot\dfrac{1992}{1992}\cdot\dfrac{1993}{1993}\cdot\dfrac{1994}{1990}\cdot\dfrac{995}{997}=\dfrac{997}{995}\cdot\dfrac{995}{997}=1\)

NV
16 tháng 7 2020

Đặt \(x-\frac{a+b}{2}=X\)

\(\Rightarrow y=\left(X-\frac{a-b}{2}\right)^{1994}+\left(X+\frac{a-b}{2}\right)^{1994}\)

\(y\left(-X\right)=\left(-X-\frac{a-b}{2}\right)^{1994}+\left(-X+\frac{a-b}{2}\right)^{1994}\)

\(=\left(X+\frac{a-b}{2}\right)^{1994}+\left(X-\frac{a-b}{2}\right)^{1994}=y\left(X\right)\)

\(\Rightarrow y\left(X\right)\) là hàm chẵn \(\Rightarrow\) đồ thị hàm số đối xứng qua trục \(X=0\) hay đồ thị hàm \(y\left(x\right)\) đối xứng qua trục \(x-\frac{a+b}{2}=0\Leftrightarrow x=\frac{a+b}{2}\)

16 tháng 7 2020

Mình cảm ơn nhiều ạ.

19 tháng 10 2016

θÅ

9 tháng 11 2016

số hạng cuối của B phải là 3^1992 mới đúng

a, nhóm 3 số hạng liền nhau thì ta có

B=(3+3^5+3^9) +...+ [3^n+3^(n+4)+3^(n+5)] +...+ (3^1984+3^1988+3^1992)

xét số hạng tổng quát: 3^n+3^(n+4)+3^(n+5)= 3^n .(1+3^4+3^8)=

=3^n . (3^3-1)(3^3+1)(3^6+1)/(3^4-1)

=3^n . 26 .(3^3+1)(3^6+1)/(3^4-1)

vậy B chia hết cho 26, hay B chia hết cho 13

Xin chào, hiện tại em đang vướng phải câu hỏi này mà thứ 6 phải nộp rồi thật sự em không biết phải làm sao mong được mọi người giúp đỡ ạ :( câu hỏi như sau "Vào năm 1990, NASA ước tính có tổng cộng 1.8 triệu kilograms rác không gian trong quỷ đạo. Họ cũng ước tính rằng lượng rác không gian vào năm 1991 sẻ tăng thêm 0.8 triệu kilograms, và nó sẻ tăng thêm 1.2 triệu kilograms vào năm 2000....
Đọc tiếp

Xin chào, hiện tại em đang vướng phải câu hỏi này mà thứ 6 phải nộp rồi thật sự em không biết phải làm sao mong được mọi người giúp đỡ ạ :( câu hỏi như sau

"Vào năm 1990, NASA ước tính có tổng cộng 1.8 triệu kilograms rác không gian trong quỷ đạo. Họ cũng ước tính rằng lượng rác không gian vào năm 1991 sẻ tăng thêm 0.8 triệu kilograms, và nó sẻ tăng thêm 1.2 triệu kilograms vào năm 2000. Giả sử rằng sự gia tăng số lượng rác không gian được thêm vào mỗi năm tuân theo mô hình mũ (Lũy thừa), nghĩa là trọng lượng của rác không gian bổ sung mỗi năm tăng lên với tốc độ không đổi. Tìm công thức lũy thừa dự đoán trọng lượng rác vào năm t, nếu t =0 vào năm 1990. Sử dụng công thức này và tính tổng khối lượng rác không gian vào năm 2010 là bao nhiêu? Vẫn dùng công thức này tính vào năm bao nhiêu thì lưỡng rác không gian đạt đến 5 triệu kilograms"

Ngôn ngữ gốc ạ:

"In 1990, NASA estimated that a total of 1.8 million kilograms of space junk was in orbit. They also estimated that the amount of space junk added in 1991 would be 0.8 million kilograms, and that would rise to 1.2 million kilograms being added in 2000. Assume that the increase in the amount of space junk added per year follows an exponential model, i.e, the weight of additional space junk each year goes up at a constant rate. Find the exponential model to predict the weight of space junk in the year t, if t =0 in 1990 Using this model, what would be the total weight of space junk in 2010? In what year does this model predict that there will be 5 million kilograms of space junk?""

Mong được giúp đỡ ạ, em đang rất bí :'( em xin cảm ơn!

0
22 tháng 2 2020

câu B

a: =>10x=25

hay x=2,5

b: =>3x=7,65-3,15=4,5

hay x=1,5

NV
23 tháng 5 2019

Đáp án B là đáp án đúng:

Đặt \(h\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}\Rightarrow h'\left(x\right)=\frac{f'\left(x\right).g\left(x\right)-g'\left(x\right).f\left(x\right)}{g^2\left(x\right)}\)

\(f'\left(x\right)>0;g\left(x\right)>0\Rightarrow f'\left(x\right).g\left(x\right)>0\)

\(g'\left(x\right)< 0;f\left(x\right)>0\Rightarrow g'\left(x\right).f\left(x\right)< 0\Rightarrow-g'\left(x\right).f\left(x\right)>0\)

\(\Rightarrow h'\left(x\right)>0\Rightarrow h\left(x\right)\) đồng biến trên \(\left(a;b\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 3:

Áp dụng các hằng đẳng thức đáng nhớ ta có:

$C=a^4+b^4=(a^2+b^2)^2-2a^2b^2$

$=[(a+b)^2-2ab]^2-2(ab)^2$

$=(8^2-2.15)^2-2.15^2=706$

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 2:

a)

$D=-x^2+6x-11=-11-(x^2-6x)=-2-(x^2-6x+9)$

$=-2-(x-3)^2$

Vì $(x-3)^2\geq 0$ với mọi $x$ nên $D=-2-(x-3)^2\leq -2$

Vậy GTLN của $D$ là $-2$ khi $(x-3)^2=0\Leftrightarrow x=3$
b)

$F=4x-x^2+1=1-(x^2-4x)=5-(x^2-4x+4)=5-(x-2)^2$

$\leq 5-0=5$

Vậy $F_{\max}=5$. Giá trị này được khi $(x-2)^2=0\leftrightarrow x=2$

AH
Akai Haruma
Giáo viên
17 tháng 1 2018

Lời giải:

Ta có:

\(F(x)=\int f(x)dx=\int e^x\cos xdx\)

Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \cos xdx=\sin x\end{matrix}\right.\)

Do đó:

\(F(x)=\int e^x\cos xdx=e^x\sin x-\int \sin x.e^xdx+c\) (1)

Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\sin xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \sin xdx=-cos x\end{matrix}\right.\)

\(\Rightarrow \int \sin x.e^xdx=-\cos x.e^x+\int \cos x.e^xdx+c\) (2)

Từ (1)(2) suy ra:

\(F(x)=e^x.\sin x+\cos x.e^x-\int \cos x.e^xdx+c\)

\(\Leftrightarrow F(x)=e^x\sin x+e^x\cos x-F(x)+c\)

\(\Leftrightarrow F(x)=\frac{1}{2}e^x(\sin x+\cos x)+c\)

Do đó: \(a=b=\frac{1}{2}\)