Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=-3x^3-3x\)
\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=\left(2x^3-5x^3\right)-3x+\left(-x^2+x^2\right)\)
\(=-3x^3-3x\)
_Chúc bạn học tốt_
a) (2x+1)^2+2(4x^2-2)+(2x-1)^2=4x2+4x+1+8x2-4+4x2-4x+1=16x2-2
a) A = (x + 2y)(x^2 - 2xy + 4y^2) - 8(x^3 + y^3)
A = x(x^2 - 2xy + 4y^2) + 2y(x^2 - 2xy + 4y^2) - 8(x^3 + y^3)
A = x^3 - 2x^2y + 4xy^2 + 2x^2y - 4xy^2 + 8y^3 - 8x^3 - 8y^3
A = -7x^3
b) B = (2x + y)^3 - (8x^3 + y^3) - 2x^2y
B = (2x + y)[(2x)^2 + 2.2xy + y^2] - 8x^3 - y^3 - 2x^2y
B = 2x[(2x)^2 + 2.2xy + y^2] + y[(2x)^2 + 2.2xy + y^3] - 8x^3 - y^3 - 2x^2y
B = 8x^3 + 8x^2y + 2xy^2 + 4x^2y + y^3 - 8x^3 - y^3 - 2x^2y
B = 10x^2y + 6xy^2
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
a)
\(\left(x+1\right)^2+x\left(2-x\right)\)
\(=x^2+2x+1+2x-x^2\)
\(=4x+1\)
b)
\(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-x^2+8\)
\(=-6x^2+12x\)