K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

tớ làm bài trên trước rùi làm cho bạn

22 tháng 6 2017

\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)\(\Leftrightarrow\left(x^2y-xy^2\right)+\left(x^2z-xyz\right)+\left(z^2y-z^2x\right)+\left(y^2z-xyz\right)=0\)\(\Leftrightarrow xy\left(x-y\right)+xz\left(x-y\right)-z^2\left(x-y\right)-yz\left(x-y\right)=0\)\(\Leftrightarrow\left(xy+xz-z^2-yz\right)\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[x\left(y+z\right)-z\left(y+z\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-z\right)\left(y+z\right)=0\Rightarrow\left[{}\begin{matrix}x-y=0\\x-z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x=z\\y=-z\end{matrix}\right.\Rightarrowđpcm\)

22 tháng 6 2017

\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)

\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y-2xyz=0\)

\(\left(x^2y-y^2x\right)+\left(x^2z-xyz\right)+\left(z^2y-z^2x\right)=\left(y^2z-xyz\right)+\left(y^2z-xyz\right)=0\)

\(\left[\left(x-y\right)\left(xy\right)\right]+\left[\left(x-y\right)\left(zx\right)\right]+\left[\left(x-y\right)\left(-z^2\right)\right]+\left[\left(x-y\right)\left(-yz\right)\right]\)

\(\left(x-y\right)\left(xy+zx-z^2-yz\right)=\left(x-y\right)\left(x-z\right)\left(y+z\right)\)

đpcm

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)

\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = \left( {8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z} \right) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ =  - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)

Hạng tử có bậc cao nhất là \({x^2}{y^2}\) có bậc là 2 + 2 = 4 nên bậc của đa thức là 4.

b) Thay \(x =  - 4;y = 2;z = 1\) vào P ta được \(P =  - 2.\left( { - 4} \right).2.1 + {5.2^2}.1 + {\left( { - 4} \right)^2}{.2^2} = 16 + 20 + 64 = 100.\)

11 tháng 10 2015

a)=x2-5x-2x+10=x(x-5)-2(x-5)=(x-5)(x-2)

b)=4x2-4x+x-1=4x(x-1)+(x-1)=(x-1)(4x+1)

c)=x2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

 

 

 

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

22 tháng 8 2017

hình như sai đề