Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)\(\Leftrightarrow\left(x^2y-xy^2\right)+\left(x^2z-xyz\right)+\left(z^2y-z^2x\right)+\left(y^2z-xyz\right)=0\)\(\Leftrightarrow xy\left(x-y\right)+xz\left(x-y\right)-z^2\left(x-y\right)-yz\left(x-y\right)=0\)\(\Leftrightarrow\left(xy+xz-z^2-yz\right)\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[x\left(y+z\right)-z\left(y+z\right)\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-z\right)\left(y+z\right)=0\Rightarrow\left[{}\begin{matrix}x-y=0\\x-z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x=z\\y=-z\end{matrix}\right.\Rightarrowđpcm\)
\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)
\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y-2xyz=0\)
\(\left(x^2y-y^2x\right)+\left(x^2z-xyz\right)+\left(z^2y-z^2x\right)=\left(y^2z-xyz\right)+\left(y^2z-xyz\right)=0\)
\(\left[\left(x-y\right)\left(xy\right)\right]+\left[\left(x-y\right)\left(zx\right)\right]+\left[\left(x-y\right)\left(-z^2\right)\right]+\left[\left(x-y\right)\left(-yz\right)\right]\)
\(\left(x-y\right)\left(xy+zx-z^2-yz\right)=\left(x-y\right)\left(x-z\right)\left(y+z\right)\)
đpcm
a)
\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = \left( {8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z} \right) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ = - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)
Hạng tử có bậc cao nhất là \({x^2}{y^2}\) có bậc là 2 + 2 = 4 nên bậc của đa thức là 4.
b) Thay \(x = - 4;y = 2;z = 1\) vào P ta được \(P = - 2.\left( { - 4} \right).2.1 + {5.2^2}.1 + {\left( { - 4} \right)^2}{.2^2} = 16 + 20 + 64 = 100.\)
a)=x2-5x-2x+10=x(x-5)-2(x-5)=(x-5)(x-2)
b)=4x2-4x+x-1=4x(x-1)+(x-1)=(x-1)(4x+1)
c)=x2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
tớ làm bài trên trước rùi làm cho bạn