Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a, Ta có : 2S=2+2^2+2^3+...+2^51
=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)
=> S = 2^51-1
Vậy S < 2^51
1,b 24^54.54^24.2^10 chia hết 72^63
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n
= 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|
=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0
Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003
Th1 : 2x ≤ 4003
=> M ≥ 4003-2x ≥ 0
Để m nho nhat thi 2x phai lon nhat
=> 2x=4003=>x=\(\frac{4003}{2}\)
M ≥ 4003-4003=0
Th2 2x ≥ 4003
M ≥ 2x-4003 ≥0
Để M nho nhat thi 2x phai nho nhat
=> 2x=4003=>x=4003/2
M ≥ 4003 -4003=0
Tu 2 truong hop tren ta co GTNN cua M la 0
Xay ra khi x=4003/2
Để M đạt GTNN thì:
|x-2002|+|x-2001|> hoặc = 0
Vì |x-2002|> hoặc = 0
|x-2001|> hoặc = 0
Nếu |x-2002|=0
=>x-2002=0
x=2002+0
x=2002
Thay x=2002 ta có:
|2002-2002|+|2002-2001|
=|0|+|1|
=0+1
=1
=> GTNN của M=1
Bài 2:
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)
\(=5n^2+5n-4\)
Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5
=> \(5n^2+5n-4\) không chia hết cho 5
=> điều cần cm sai
Bài 2:
b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+3n-4-n^2+3n+4\)
\(=6n\) luôn chia hết cho 6 với mọi số nguyên n
=> đpcm
B1: A=|x-13|+|x-2014|=|x-13|+|2014-x| \(\ge\) |x-13+2014-x| = 2001
Dấu "=" xảy ra khi \(\left(x-13\right)\left(2014-x\right)\ge0\Rightarrow13\le x\le2014\)
Vậy GTNN của A = 2001 khi 13\(\le\)x\(\le\)2014
B2
a, 3n+2-2n+2+3n-2n
=3n.32-2n.22+3n-2n
=3n(9+1)-2n(4+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10(3n-2n-1) chia hết cho 10
b, \(\left(x-7\right)^{x+1}+\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}\Rightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}\Rightarrow x\in\left\{6;7;8\right\}}\)
\(=5^n\left(5^2+1\right)-2^n\left(2^3+2^2+1\right)\)
=5^n*26-2^n*13 chia hết cho 13
a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)
suy ra 8^7-2^18 chia hết cho 14
a) 8^7 = (2^3)^7 = 2^21
Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)
b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)
c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)
d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54
72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126
Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24
Rõ ràng 2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)
e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)
Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)
Bài 1:
a) Ta có: \(x=7\Rightarrow8=x+1\)
Thay vào ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
\(A=7-5=2\)
Vậy khi x = 7 thì A = 2
Bài 1:
\(A=-\left|x-\dfrac{7}{2}\right|+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x=7/2
Bài 2:
a: \(A=2^{21}-2^{18}=2^{18}\cdot\left(2^3-1\right)=2^{17}\cdot14⋮14\)
b: \(B=2^6\cdot5^6-5^6\cdot5=5^6\cdot59⋮59\)
c: \(C=5^n\cdot25+5^n\cdot5+5^n=5^n\cdot31⋮31\)
a: \(P=-\left|5-x\right|+2019\le2019\forall x\)
Dấu '=' xảy ra khi x=5
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)