Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)
b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)
d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)
Đặt \(\left|x-2\right|=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)
Đặt \(\left|2x-5\right|=t\ge0\)
\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)
mấy câu còn lại tương tự nhé
nghiệm của pt 2x2 - 7x + 5 là 2,5 và 1
lập trục xét dấu ( cho nhanh, k thì bạn chọn bảng xét dấu )
1 2,5
Bài 1
d, \(x^2+2xy+y^2-2x-2y+1\)
\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)
\(\Rightarrow\left(x+y-1\right)^2\)
Bài 2:
a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\)
b,\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
c, \(4x^2-9=0\)
\(\Leftrightarrow4x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)
d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)
\(\Leftrightarrow7x^2-16x+9=0\)
\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)
\(\Leftrightarrow x=\frac{16\pm2}{14}\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)
1.a)\(3x-3y+x^2-2xy+y^2\)
\(=3\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3+x-y\right)\)
d)\(x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y+1\right)^2\)
2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)
\(\Leftrightarrow-5x-9=0\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)
b)\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)
c)\(4x^2-9=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)
d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)
\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)
3.Ta có:
8x^2-26x+m 2x-3 4x-7 -14x+m m+21
Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)
\(\Rightarrow m+21=0\)
\(\Rightarrow m=-21\)
Vậy...!
a: \(x^2-2x+\left|x-1\right|-1=0\)
\(\Leftrightarrow x^2-2x+1+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|+2\right)\left(\left|x-1\right|-1\right)=0\)
=>|x-1|=1
=>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: \(4x^2-4x-\left|2x-1\right|-1=0\)
\(\Leftrightarrow4x^2-4x+1-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|\right)^2-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|-2\right)\left(\left|2x-1\right|+1\right)=0\)
=>|2x-1|=2
=>2x-1=2 hoặc 2x-1=-2
=>x=3/2 hoặc x=-1/2
c: \(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{2}\)
d: \(x^2-2x-5\left|x-1\right|-5=0\)
\(\Leftrightarrow x^2-2x+1-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|-6\right)\left(\left|x-1\right|+1\right)=0\)
=>|x-1|=6
=>x-1=6 hoặc x-1=-6
=>x=7 hoặc x=-5