Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)
từ có ta có pt theo biến t : \(t^2+4+t-6=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
c: TH1: x>0
Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)
=>2x^2-4x=x^2-1
=>x^2-4x+1=0
hay \(x=2\pm\sqrt{3}\)
TH2: x<0
Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)
=>-2x(x-2)=x^2-1
=>-2x^2+4x=x^2-1
=>-3x^2+4x+1=0
hay \(x=\dfrac{2-\sqrt{7}}{3}\)
b:
TH1: 2x^3-x>=0
\(4x^4+6x^2\left(2x^3-x\right)+1=0\)
=>4x^4+12x^5-6x^3+1=0
\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)
TH2: 2x^3-x<0
Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)
=>4x^4+6x^3-12x^5+1=0
=>x=0,95(loại)
a/ \(x\ge-\frac{5}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+7=2x+5\\4x+7=-2x-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=6\\x=\pm\sqrt{22}\end{matrix}\right.\)
c/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\2x^2-7x+5=0\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{2}\)
d/ \(\left|x-1\right|+\left|2x+1\right|\ge\left|x-1+2x+1\right|=\left|3x\right|\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x-1\right)\left(2x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge1\end{matrix}\right.\)
Vậy nghiệm của pt là \(\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge1\end{matrix}\right.\)
a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)
b/
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)
\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)
\(\Leftrightarrow\left|x+2\right|-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
c/
\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)
\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)
Đặt \(\frac{\left|x-2\right|}{x-1}=a\)
\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)
e/ ĐKXĐ: ...
Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)
\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)
a: =>|x+3|=|2x-1|
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+3\\2x-1=-x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\3x=-2\end{matrix}\right.\Leftrightarrow x\in\left\{4;-\dfrac{2}{3}\right\}\)
b: \(\left|x^2-2x\right|=\left|2x^2-x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-2=x^2-2x\\2x^2-x-2=-x^2+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\3x^2+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\\left(x+1\right)\left(3x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-2;1;-1;\dfrac{2}{3}\right\}\)
c: \(\left|3x^2-2x\right|=\left|6-x^2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=6-x^2\\3x^2-2x=x^2-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x^2-2x-6=0\\2x^2-2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow2x^2-x-3=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+1\right)=0\)
=>x=3/2 hoặc x=-1
d: \(\left|2x^2-3x-5\right|=\left|x^2-4x-5\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=x^2-4x-5\\2x^2-3x-5=4x+5-x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\\3x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\3x^2-10x+3x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\\left(3x-10\right)\left(x+1\right)=0\end{matrix}\right.\)
hay \(x\in\left\{\dfrac{10}{3};-1\right\}\)
e: |5x+1|=|2x-3|
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=2x-3\\5x+1=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\7x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)
a/ \(x\ge-3\)
\(\Leftrightarrow\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)
b/ \(x\ge-\frac{5}{2}\)
\(\Leftrightarrow\left(4x+7\right)^2=\left(2x+5\right)^2\)
\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
c/ \(x\ge1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=5x-5\\2x^2-3x-5=5-5x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-8x=0\\2x^2+2x-10=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\\x=\frac{-1+\sqrt{21}}{2}\\x=\frac{-1-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)
d/ \(x\ge\frac{17}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\left(l\right)\\x=\sqrt{22}\\x=-\sqrt{22}\left(l\right)\end{matrix}\right.\)
e/ \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-x-2=x-2\\3x^2-x-2=2-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=0\\3x^2=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{2}{3}\left(l\right)\\x=\frac{2\sqrt{3}}{3}\\x=\frac{-2\sqrt{3}}{3}\end{matrix}\right.\)
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
Cuối năm rồi sao vẫn làm bài này thế :D
Đáp án : C . Vì C không chứa nghiệm của pt đã cho
a: \(x^2-2x+\left|x-1\right|-1=0\)
\(\Leftrightarrow x^2-2x+1+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|+2\right)\left(\left|x-1\right|-1\right)=0\)
=>|x-1|=1
=>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: \(4x^2-4x-\left|2x-1\right|-1=0\)
\(\Leftrightarrow4x^2-4x+1-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|\right)^2-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|-2\right)\left(\left|2x-1\right|+1\right)=0\)
=>|2x-1|=2
=>2x-1=2 hoặc 2x-1=-2
=>x=3/2 hoặc x=-1/2
c: \(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{2}\)
d: \(x^2-2x-5\left|x-1\right|-5=0\)
\(\Leftrightarrow x^2-2x+1-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|-6\right)\left(\left|x-1\right|+1\right)=0\)
=>|x-1|=6
=>x-1=6 hoặc x-1=-6
=>x=7 hoặc x=-5