Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Chứng minh các số mũ đều có số dư bằng 33 khi chia cho 44
Đặt: {555777=4k1+3555333=4k2+3{555777=4k1+3555333=4k2+3 ta có:
333555777+777555333=3334k1+3+7774k2+3333555777+777555333=3334k1+3+7774k2+3
=3333.(3334)k1+7773.(7774)k2=3333.(3334)k1+7773.(7774)k2
=(...7¯¯¯¯¯¯¯¯).(...1¯¯¯¯¯¯¯¯)+(...3¯¯¯¯¯¯¯¯).(...1¯¯¯¯¯¯¯¯)=(...7¯¯¯¯¯¯¯¯)+(...3¯¯¯¯¯¯¯¯)=(...7¯).(...1¯)+(...3¯).(...1¯)=(...7¯)+(...3¯)
=(...0¯¯¯¯¯¯¯¯)⇒333555777+777555333=(...0¯)⇒333555777+777555333 có chữ số tận cùng là 00
⇔333555777+777555333⋮10⇔333555777+777555333⋮10 (Đpcm)
Ta có:
5552≡5(mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
Để mik giúp pạn nhé:
Ta có:
\(555^2\equiv5\)(mod 10)
\(555^3\equiv5\)( mod 10)
\(555^5=555^2.555^3\equiv5.5\equiv5\)(mod 10)
---> \(555^{777}\equiv5\)(mod 10)
Suy ra:
\(333^{555^{777}}\)đồng dư với \(333^5\)
Do \(333^5=3332.3333\equiv3\)(mod 10)
Vậy chữ số tận cùng của \(333^{555^{777}}\)là 3 (1)
Làm tương tự với \(777^{555^{333}}\)có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra \(333^{555^{777}}+777^{555^{333}}\)có chữ số tận cùng là 0
Vậy \(333^{555^{777}}+777^{555^{333}}\)chia hết cho 10 (đpcm)
555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
Ta có :
\(555^2\equiv5\left(mod10\right)\)
\(555^3\equiv5\left(mod10\right)\)
\(555^5=555^2\cdot555^3\equiv5\cdot5\equiv5\left(mod10\right)\)
\(\Rightarrow555^{777}\equiv5\left(mod10\right)\)
Suy ra :
\(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=3332\cdot3333\equiv3\left(mod10\right)\)
Vậy chữ số tận cùng của \(333^{555^{777}}\) là 3 (1)
Tương tự : \(777^{555^{333}}\) có chữ số chữ số tận cùng là 7 (2)
Từ (1) ; (2) suy ra :
\(333^{555^{777}}\)\(+777^{555^{333}}\) có chữ số tận cùng là 0
Vậy \(333^{555^{777}+}777^{555^{333}}\) \(⋮10\)
\(333^{555^{777}}+777^{555^{333}}\)
\(333^{555^{777}}=333^{555.555....555}\left(\text{có 777 số 555}\right)=\left(333^{555}\right)^{555...555}\)
\(333^{555}=3^{555}.111^{555}=\left(3^5\right)^{111}.111^{555}\)
\(\left(3^5\right)^{111}=243^{111}=243^{100}.243=\left(243^4\right)^{25}.243=\overline{...1}.243\text{ có c/s tận cùng là 3}\)
\(\Rightarrow\left(3^5\right)^{111}.111^{555}\text{ có c/s tận cùng là 3 hay }333^{555}\text{ có c/s tận cùng là 3}\)
\(\Rightarrow\left(333^{555}\right)^{555.555....555}\text{có c/s tận cùng là 5}\Rightarrow333^{555^{777}}\text{có c/s tận cùng là 5}\)
tương tự cái kia =)
p/s: bài này không dễ, sai bỏ qua
mọe, t làm lộn => sai mẹ cả bài T.T
dòng thứ 4
\(\left(3^5\right)^{111}=243^{111}=243^{110}.243=\left(243^2\right)^{55}.243=\overline{...9}.243\text{ có c/s tận cùng là 7}\)
\(\Rightarrow\left(3^5\right)^{111}.111^{555}\text{ có c/s tận cùng là 7 hay }333^{555}\text{ có c/s tận cùng là 7}\)
mà bài này max khó >: t chịu......lúc nãy làm sai bét be :"(
p/s: t cần vài ngày để nghĩ_còn ko làm đc thì thôi