K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

12 tháng 7 2019

Akai Haruma Bonking

22 tháng 9 2019

1.Ta co:

\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)

\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)

\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)

Dau '=' xay ra khi \(x=-1\)

Vay \(A_{min}=3\)khi \(x=-1\)

22 tháng 9 2019

2c.

\(DK:x\ge\frac{1}{2}\)

\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)

\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)

Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vay PT vo nghiem

22 tháng 7 2019

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)