Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7/4 . (3333/1212 + 3333/2020 + 3333/3030 + 3333/4242)
A = 7/4 . (11/4 + 33/20 + 11/10 + 11/14)
A = 7/4 . 44/7
A = 11
Chúc bạn học tốt
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{42.101}\right)\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{6}\right)\)
\(A=\frac{7}{4}.33.\frac{1}{6}\)
\(A=\frac{7.33}{4.6}\)
\(A=\frac{7.3.11}{4.3.2}\)
\(A=\frac{7.11}{4.2}\)
\(A=\frac{77}{8}\)
A=7/4.(3333/1212+3333/2020+3333/3030+3333/4242)
A=7/4.(33/12+33/20+33/30+33/42)
A=7/4.33.(1/3*4+1/4*5+1/5*6+1/6*7)
A=231/4.(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)
A=231/4.(1/3-1/7)
A=231/4.4/21
A=11. Vay A=11
Nho k cho minh voi nhe
A= 7/4-(33/12x101+33/20x101+33/30x101+33/42x101)
=7/4-[101x(33/12+33/20+33/30+33/42)]
=7/4-44/7
=-127/28
\(\frac{7}{4}.\left(\frac{101.33}{101.12}+\frac{101.33}{101.20}+\frac{101.33}{101.30}+\frac{101.33}{101.42}\right)\)
\(=\frac{7.33}{4}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\\ =\frac{7.33}{4}\left(\frac{35+21+14+1}{420}\right)\)
\(=\frac{7.3.11}{4}.\frac{71}{420}=\frac{7.3.11.71}{4.4.5.3.7}=\frac{781}{100}\)
mk lm chak vớ vẩn rồi
\(A=\frac{7}{4}\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
\(A=\frac{7}{4}\left(\frac{385}{140}+\frac{231}{140}+\frac{154}{140}+\frac{110}{140}\right)\)
\(A=\frac{7}{4}.\frac{44}{7}\)
\(A=\frac{44}{4}=11\)
\(A=\frac{7}{4}X\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
\(A=\frac{7}{4}X\frac{44}{7}=11\)
=> A=\(\frac{7}{4}\) . ( \(\frac{33}{12}\) + \(\frac{33}{20}\) + \(\frac{33}{30}\) + \(\frac{33}{42}\) ) => A= \(\frac{7}{4}\).33. ( \(\frac{1}{12}\) + \(\frac{1}{20}\) + \(\frac{1}{30}\) + \(\frac{1}{42}\) )
=> A=\(\frac{7}{4}\).33. ( \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + \(\frac{1}{5.6}\) + \(\frac{1}{6.7}\) ) = \(\frac{7}{4}\).33.(\(\frac{1}{3}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{5}\) + \(\frac{1}{5}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - \(\frac{1}{7}\) )
= \(\frac{7}{4}\) .33.(\(\frac{1}{3}\) - \(\frac{1}{7}\)) = \(\frac{7}{4}\) .33. \(\frac{4}{21}\) = 11. Vậy A=11
Ta có :
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}.\left[3333.\left(\frac{1}{1212}+\frac{1}{2020}+\frac{1}{3030}+\frac{1}{4242}\right)\right]\)
\(A=\frac{7}{4}.\left[3333.\left(\frac{1}{12.101}+\frac{1}{20.101}+\frac{1}{30.101}+\frac{1}{42.101}\right)\right]\)
\(A=\frac{7}{4}.\left[3333.\frac{1}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=33.\left[\frac{7}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
\(A=33.\left[\frac{7}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(A=33.\left(\frac{7}{4}-\frac{4}{7}\right)\)
\(A=33.1\)
\(A=33\)
\(A=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(A=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{7}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(A=\frac{7}{4}.33.\frac{4}{21}\)
\(A=11\)