Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
a, Để 3/(n-1) nguyên
<=> 3 chia hết cho n-1
Mà n-1 nguyên
=> n-1 thuộc Ư(3)={-3,-1,1,3}
=> n=-2,0,2,4
a) \(\frac{-32}{\left(-2\right)^n}=4\)
\(\frac{\left(-2\right)^5}{\left(-2\right)^n}=4\)
\(\left(-2\right)^{5-n}=\left(-2\right)^2\)
=> 5-n = 2
n = 3
b) \(\frac{8}{2^n}=2\)
\(\frac{2^3}{2^n}=2\)
\(2^{3-n}=2^1\)
=> 3 -n = 1
n = 2
c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)
\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)
=> 2n -1 = 3
2n = 4
n = 2
a) \(\frac{-32}{\left(-2\right)^n}=4\Leftrightarrow\left(-2\right)^n=\frac{-32}{4}\)
\(\left(-2\right)^n=-8\)Mà \(-8=2^{-3}\)
\(\Rightarrow x=-3\)
b) \(\frac{8}{2^n}=2\Leftrightarrow2^n=\frac{8}{2}\)
\(2^n=4\) Mà \(4=2^2\Rightarrow x=2\)
c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\Rightarrow\left(\frac{1}{2}\right)^{2n}:\frac{1}{2}=\frac{1}{8}\)
\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{8}\cdot\frac{1}{2}\)
\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{16}\Leftrightarrow\frac{1}{2^{2n}}=\frac{1}{16}\) mà\(16=2^4\)
\(2n=4\Rightarrow n=2\)
Vậy .........................
Ta có :
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(A< \frac{1}{4}-\frac{1}{4n}\)
Lại có \(n>0\) nên \(\frac{1}{4n}>0\)
\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Đề là chứng minh N < 1/4 sẽ đúng hơn
Ta có :
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(\Rightarrow2^2.N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
Ta lại có :
\(4N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)
\(\Rightarrow N< \left(1-\frac{1}{n}\right):4=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
Mà \(n\in N;n\ge2\)=> 1 -\(\frac{1}{n}\)< 1
=> \(N< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\)
=> \(N< \frac{1}{4}\)( đpcm )