\(\dfrac{3^2}{5.14}+\dfrac{3^2}{7.18}+\dfrac{3^2}{9.22}+\dfrac{3^2}{11.26}+\dfrac{3^2}{13.30}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

\(A=\dfrac{3^2}{5\cdot14}+\dfrac{3^2}{7\cdot18}+\dfrac{3^2}{9\cdot22}+\dfrac{3^2}{11\cdot26}+\dfrac{3^2}{13\cdot30}\\ =3^2\cdot\left(\dfrac{1}{5\cdot14}+\dfrac{1}{7\cdot18}+\dfrac{1}{9\cdot22}+\dfrac{1}{11\cdot26}+\dfrac{1}{13\cdot30}\right)\\ =9\cdot\dfrac{1}{2}\cdot\left(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+\dfrac{1}{9\cdot11}+\dfrac{1}{11\cdot13}+\dfrac{1}{13\cdot15}\right)\\ =\dfrac{9}{2}\cdot\dfrac{1}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\right)\\ =\dfrac{9}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\right)\\ =\dfrac{9}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{15}\right)\\ =\dfrac{9}{4}\cdot\dfrac{2}{15}\\ =\dfrac{3}{10}\)

12 tháng 4 2018

\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{99.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)

\(=\frac{9}{5.14}+\frac{9}{7.18}+\frac{9}{9.22}+\frac{9}{11.26}+\frac{9}{13.30}\)

\(=\frac{9}{2}.\left(\frac{4}{10.14}+\frac{4}{14.18}+\frac{4}{18.22}+\frac{4}{22.26}+\frac{4}{26.30}\right)\)

\(=\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+...+\frac{1}{26}-\frac{1}{30}\right)\)

\(=\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{30}\right)\)

\(=\frac{9}{2}.\left(\frac{3}{30}-\frac{1}{30}\right)\)

\(=\frac{9}{2}.\frac{2}{30}\)

\(=\frac{9}{30}\)

\(=\frac{3}{10}\)

Chúc bạn học tốt !!! 

4 tháng 5 2017

A =\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)

A =\(3^2.\left(\frac{1}{5.14}+\frac{1}{7.18}+\frac{1}{9.22}+\frac{1}{11.26}+\frac{1}{13.30}\right)\)

A =\(9.\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)

A =\(\frac{9}{4}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

A =\(\frac{9}{4}.\left(\frac{1}{5}-\frac{1}{15}\right)\)

A =\(\frac{9}{4}.\frac{2}{15}\)

A =\(\frac{3}{10}\)

3 tháng 6 2019

\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)

\(=3^2.2.\left(\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\right)\)

\(=9.2.\frac{1}{4}.\left(\frac{14-10}{14.10}+\frac{18-14}{14.18}+\frac{22-18}{18.22}+\frac{26-22}{22.26}+\frac{30-26}{26.30}\right)\)

\(=\frac{9}{2}\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)

=\(\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{30}\right)=\frac{9}{2}.\frac{1}{15}=\frac{3}{10}\)

3 tháng 6 2019

\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{13.30}\)

\(2.\left(\frac{3^2.}{5.2.14}+\frac{3^2}{2.7.18}+\frac{3^2}{2.9.22}+\frac{3^2}{2.13.30}\right)\)

\(2.\left(\frac{3^2}{10.14}+\frac{3^2}{14.18}+\frac{3^2}{18.22}+\frac{3^2}{26.30}\right)\)

\(2.\frac{3^2}{4}\left(\frac{4}{10.14}+\frac{4}{14.18}+\frac{4}{18.22}+\frac{4}{26.30}\right)\)

\(\frac{9}{2}\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{195}\right)\)

\(\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{22}+\frac{1}{195}\right)\)

\(\frac{9}{2}.\left(\frac{3}{55}+\frac{1}{195}\right)\)

=\(\frac{9}{2}.\frac{128}{2145}\)

\(\frac{192}{715}\)

5 tháng 4 2018

bài 1.a)\(A=\frac{9^3.25^3}{18^2.125^2}=\frac{3^6.5^6}{2^2.3^4.5^6}=\frac{9}{4}\)

b) \(B=\frac{18}{37}+\frac{19}{37}+\frac{8}{2017}-\frac{4026}{2017}+\frac{2017}{2018}\)

\(=1-\frac{4014}{2017}+\frac{2017}{2018}=\frac{1997}{2017}+\frac{2017}{2018}\)

b: \(A=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)

c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)

=1-1/16=15/16

11 tháng 4 2017

\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)

\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé