\(^{\bigcirc}\)+ sin85
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2021

Sử dụng 2 công thức: \(sina=cos\left(90^0-a\right)\) và \(sin^2a+cos^2a=1\) ta có:

\(A=sin^25^0+cos^2\left(90^0-85^0\right)=sin^25^0+cos^25^0=1\)

27 tháng 9 2018

a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)

b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)

c) tan2 a (2 sin2a + 3 cos2 a - 2)

=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]

=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)

b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)

c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)

\(=tan^2a\left[cos^2a\right]\)

\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)

3 tháng 9 2016

a/\(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha=\left(sin^2\alpha+cos^2\alpha\right)^2=1\)

b/ \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)=\frac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)

c/ \(cos^2\alpha+tan^2\alpha.cos^2\alpha=cos^2\alpha\left(1+tan^2\alpha\right)\)

\(=cos^2\alpha.\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)=cos^2\alpha.\left(\frac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\right)\)

\(=cos^2.\frac{1}{cos^2\alpha}=1\)

3 tháng 9 2016

a/ \(\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=\left(sin^2\alpha+cos^2\alpha\right)-cos^2\alpha=sin^2\alpha\)

b/ \(1+sin^2\alpha+cos^2\alpha=1+1=2\)

c/ \(sin\alpha-sin\alpha.cos^2\alpha=sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)

14 tháng 8 2017

a)ta có cos2a = 1-sin2a => A = 4(1-sin2a) -6sin2a

A= 4 -10sin2a = 4- 10.(4/5)2 = -2,4

A = -2,4

b) B = tt

14 tháng 8 2017

ôi, nhầm sina =1/5 => A = 4-10.(1/5)2 = 4-0,4 = 3,6

A=3,6

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)

b)

\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)

c) Đề bài sai.

\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)

\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)

\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)

d)

\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)

\(=1-2\sin a\cos a\)

e) ĐK tồn tại tan là $\cos x\neq 0$

\(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)

Ta có:

\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)

\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)

\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)

NV
16 tháng 9 2019

\(tan^2a-sin^2a=\frac{sin^2a}{cos^2a}-sin^2a=\left(\frac{1}{cos^2a}-1\right).sin^2a\)

\(=\left(\frac{1-cos^2a}{cos^2a}\right).sin^2a=\left(\frac{sin^2a}{cos^2a}\right).sin^2a=tan^2a.sin^2a\)