K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

 xét 2A=22+23+24+...+211

-A=2+22+23+......+210

A=211-2

ta thấy 2/3 dư 2

          22=4/3 dư 2

          23=8/3 3 dư 2

..................................

211/3 dư 2

=>211-2laf 1 số chia hết cho 3

9 tháng 10 2018

2A=2(2+2^2+2^3+2^4+...+2^8+2^9+2^10)

2A=2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)

2A-A=(2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)-(2+2^2+2^3+2^4+...+2^8+2^9+2^10)

A=2^11-2

A=2046

Mà 2046 chia hết cho 3

Vậy A chia hết cho 3 

Điều phải chứng minh

500-{5.(409-(2³x3-21)²]-1724}

= 500-{5.(409-(8x3-21)²]-1724}

=500-{5.(409-(24-21)²]-1724}

=500-{5.(409-3²)-1724}

=500-{5.(409-9)-1724}

=500-{5.400-1724}

=500-{2000-1724}

=500-276

=224

Hok tốt!

26 tháng 11 2016

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3

=>A  chia hết cho 3

26 tháng 11 2016

A = 2 + 22 + 23 + 24 + ... + 260

=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )

=> A = 2( 1 + 2 ) + 22(1 + 2 ) + ... + 259( 1 + 2 )

=> A = 2 . 3 + 22 . 3 + ... + 259 . 3

=> A = ( 2 + 22 + 259 ) . 3 chia hết cho 3

Vậy A chia hết cho A

8 tháng 3 2020

1028 + 8 \(⋮\)72

=> 1028+8 \(⋮\)9; 1028+8 \(⋮\)9

Ta có: 1028+8

= 1000000.........0 +8 

= 1000......008

Vì 008 \(⋮\)8 nên 1028+8 \(⋮\)8

Tổng các chữ số của 1028+8 là: (1+0+0+.......+0+8) = 9 mà 9 \(⋮\)9 nên 1028+8 \(⋮\)9

=>1028+8 \(⋮\)72

Vậy.....

8 tháng 3 2020

a) Ta thấy: 1028 + 8 = 1...008

Xét: 1 + 0 + ... + 0 + 8 = 9

=> 1...008 \(⋮\) 9

Mà 08 \(⋮\) 2 và 4

=> 1...008 \(⋮\) 9 . 2 . 4 = 72

=> 1028  + 8 \(⋮\) 72 (đpcm)

b) Ta có: 88 + 220 = (23)8 + 220 = 224 + 220 = 220(24 + 1) = 220 . 17

Vì 17 \(⋮\) 17 => 220 . 17 \(⋮\) 17

=> 88 + 220 \(⋮\) 17 (đpcm)

i don't now

mong thông cảm !

...........................

25 tháng 7 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

nhiều qá lm sao nổi

15 tháng 9 2016

trên mạng có đấy e

2 tháng 8 2017

Nghe sến quá em ơi

18 tháng 7 2023

\(A=2+2^2+2^3+...+2^{260}\)

\(A=2\left(1+2\right)+2^2\left(1+2\right)+2^3\left(1+2\right)+...+2^{259}\left(1+2\right)\)

\(A=2.3+2^2.3+2^3.3+...+2^{259}.3\)

\(A=3\left(2+2^2+2^3+...+2^{259}\right)⋮3\left(1\right)\)

 

 

\(A=\left(2+2^2+2^3\right)+...+\left(2^{258}+2^{259}+2^{260}\right)\)

\(A=2.\left(1+2+2^2\right)+...+2^{258}.\left(1+2+2^2\right)\)

\(A=2.7+...+2^{258}.7\Rightarrow A=7\left(2+...+2^{258}\right)⋮7\left(2\right)\)

 

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{257}+2^{258}+2^{259}+2^{260}\right)\)

\(A=2.\left(1+2+2^2+2^3\right)+...+2^{257}.\left(1+2+2^2+2^3\right)\)

\(A=2.15+...+2^{257}.15\Rightarrow A=15\left(2+...+2^{257}\right)⋮5\left(15⋮5\right)\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow dpcm\)